• Title/Summary/Keyword: Heat balance analysis

Search Result 210, Processing Time 0.027 seconds

Evaluation of Hydrometeorological Components Simulated by Water and Energy Balance Analysis (물수지와 에너지수지 해석에 따른 수문기상성분 평가)

  • Ji, Hee Sook;Lee, Byong Ju;Nam, Kyung Yeub;Lee, Chul Kyu;Jung, Hyun Sook
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.1
    • /
    • pp.25-35
    • /
    • 2014
  • The objective of this study is to evaluate TOPLATS land surface model performance through comparison of results of water and energy balance analysis. The study area is selected Nakdong river basin and high resolution hydrometeorological components of which spatio-temporal resolution is 1 hr and 1 km are simulated during 2003 to 2013. The simulated daily and monthly depth of flows are well fitted with the observed one on Andong and Hapcheon dam basin. In results of diurnally analysis of energy components, change pattern throughout the day of net radiation, latent heat, sensible heat, and ground heat under energy balance analysis have higher accuracy than ones under water balance analysis at C3 and C4 sites. Especially, root mean square errors of net radiation and latent heat at C4 site are shown very low as 22.18 $W/m^2$ and 7.27 $W/m^2$, respectively. Mean soil moisture and evapotranspiration in summer and winter are simulated as 36.80%, 33.08% and 222.40 mm, 59.95 mm, respectively. From this result, when we need high resolution hydrometeorological components, energy balance analysis is more reasonable than water balance analysis. And this results will be used for monitor and forecast of weather disaster like flood and draught using spatial hydrometeorological information.

Thermal Performance Simulation of Cogeneration Power Plants (열병합 발전플랜트의 열성능 해석)

  • Lee, Dong-Won;O, Myeong-Do;Lee, Jae-Heon;Jo, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.451-460
    • /
    • 2001
  • An analysis program for the thermal performance prediction of steam turbine cogeneration systems with multi-extraction, reheat and regeneration has been developed on the basis of the thermodynamic heat balance method. Heat balance analyses were performed for a commercial cogeneration power plant using the program. Its appropriateness was verified by comparing its heat balance results with those of other commercial programs and those provided by the original system designer. Further parametric analyses were carried out and performance improvement measures in designing the plant were suggested.

Efficient Energy Management for Pyro-processing of Solids - (1) Heat & Mass Balance and Evaluation (고체 고온공정에서 효율적 에너지 관리 - (1) 공정 열정산 및 평가 방법)

  • Ha, Daeseung;Choi, Sangmin
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.1
    • /
    • pp.18-30
    • /
    • 2016
  • Pyro-process of solids is the way to heat solid materials under high temperature. In this processing, energy efficient use is one of the main concerns due to its high energy consumption of bulk materials. To calculate the energy use of processes, heat & mass balance in simplified 0-dimensional model was performed. Energy calculation by this simplified model can lead to confusion due to simplification. Thus, it is necessary to understand considerations of energy analysis. In this study, cement manufacturing as a very common example of pyro-processing of solids, was introduced for explaining considerations of energy analysis for energy efficient use.

ANALYSIS OF THE OCEAN' AND ATMOSPHERE ROLES IN THEIR HEAT INTERACTION WITH USE OF SATELLITE AND VESSEL

  • Grankov, Alexander Georgievich;Mil'shin, Alexander Alexeevich;Krapivin, Vladimir Fedorovich;Golovachev, Sergey Petrovich
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.1001-1002
    • /
    • 2006
  • Special problem emphasized by specialists in the field of analyzing the heat interchanges in the system ocean-atmosphere (SOA) is a necessity of determination of the near-surface atmospheric temperature, which can be only indirectly connected with characteristics of the SOA natural microwave radiation measured from satellites. That is why, the following dilemma is not obvious, but interesting and promised: what is better - to use the satellite methods for retrieving the partial parameters of the SOA or for analysis its state as a whole. To our opinion, this task is similar to the idea recognized by specialists engaged in the heat infrared region (8-12 mcm) of electromagnetic spectrum and its applications, where an intensity of natural infrared radiation (effective radiation) is used as the inherent property (the attribute) of the SOA heat balance. Here we studied important aspects of this problem: a) what medium initiates a heat transfer in the SOA and disturbs its heat balance - the ocean or the atmosphere b) what SOA parameters directly influence on its natural microwave radiation intensity (brightness temperature) measured from satellites? We relate these processes mainly to the synoptic range of time scales enriched by various events in the SOA interface such as the mid-latitude and tropical cyclones.

  • PDF

Simple Design Method of the Engine Enclosure Considering Cooling and Noise Reduction (냉각과 소음을 고려한 엔진 차폐 구조의 간편한 설계 방법)

  • 최재웅;김관엽;이희준
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.184-188
    • /
    • 1999
  • Noise regulation of heavy construction machinery is getting stricter: 3 dB per every 4 year in European community. To meet this requirement many engineers have adopted the enclosing structures with thick absorbing materials and small opening, This increases internal temperature of the enclosure which have engine systems such as electric equipment that are vulnerable to heat, and engine block and muffler that can be regarded as heat sources. So noise control engineers have to consider a coupling problem: combining heat balance and noise reduction. This paper describes this approach by introducing simple heat transfer theory and SEA. The enclosing system of the loader whose enclosing structure consists of two rooms is investigated to show the validity of this method. The results represent that the simple heat transfer theory can be useful to estimate cooling performance when it is linked together by the back pressure theory in duct system. and the radiated noise can also be estimated by the SEA. Therefore a designer can use these approaches to define the opening ratio of an enclosure and the mass flow rate of air considering radiating noise.

  • PDF

Life Cycle Assessment for the Business Activities of Green Company -2. Mass Balance and Environmental Improvement (녹색기업의 사업활동 전 과정에 대한 환경성 평가 -2. 물질수지 및 환경개선)

  • Shin, Choon-Hwan;Park, Do-Hyun
    • Journal of Environmental Science International
    • /
    • v.22 no.4
    • /
    • pp.425-433
    • /
    • 2013
  • A mass balance of process was calculated by using the analysis of basic unit and environmental assessment of all the processes of Busan fashion color industry cooperative that operates a combined heat and power plant and a bio treatment plant. The mass balance for the combined heat and power plant was done, based on boiler and water treatment processes while each unit reactor was used for the bio treatment plant. From the results above, a resource recycle network, a treatment flowchart for food waste water/wastewater treatment and a carbon reduction program were established.

A Study on the Greenhouse Water Curtain System: Heat Transfer Characteristics

  • 손원명;한길영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.80-87
    • /
    • 1990
  • Energy balance equations Were developed to describe the heat transfer mechanisms in a double layer plastic greenhouse with a water curtain system. Heat transfer variables were determined by using various temperature data measured in a conventional prototype semicircular cross-section greenhouse over a range of water temperatures and water flow rates. The heat transfer coefficient between flowing water and greenhouse air was independent of water flow rates. But the heat transfer coefficient between water surface and the stagnant air space within the double plastic layer was dependent on water flow rates. Substituting the heat transfer coefficients, determined from the energy balance equations in the heat transfer equations, demonstrated various relationships among ambient air temperature, greenhouse air temperature, water temperature, and water flow rates. The heating benefits were linearly related to not only the inside and outside air temperatures but also to the water temperature. The energy conservation effects of the water curtain system were found even initial water temperatures were considerably lower than the greenhouse setting temperatures. Sensitivity analysis for heat transfer coefficients demonstrated that the heat transfer coefficient between greenhouse air and the stagnant air within the plastic layers was the most significant coefficient in the estimation of heating effects.

  • PDF

On the Warming Effects due to Artificial Constructions in a Large Housing Complex (대규모 주택단지내의 인공구조물에 의한 승온화효과에 관한 연구)

  • 김해동;이송옥;구현숙
    • Journal of Environmental Science International
    • /
    • v.12 no.7
    • /
    • pp.705-713
    • /
    • 2003
  • In mid-August 2002, under clear summer pressure patterns, we carried out an intensive meteorological observation to examine the warming effects due to artificial constructions in a large housing complex. We set an automatic weather system(AWS) at two places in a bare soil surface within a limited development district and an asphalt surface within a large apartment residence area, respectively. As a result of observation, it became clear that the difference of the surface air(ground) temperature between the bare soil surface and its peripheral asphalt area reached about 4$^{\circ}C$(13$^{\circ}C$) at the maximum from diurnal variation of surface temperatures on AWS data. Through the heat balance analysis using measurement data, it became clear that the thermal conditions at two places are dependent on the properties of surface material. The latent heat flux over the bare soil surface reached to about 300 W/㎡, which is more than a half of net radiation during the daytime. On the other hand, it was nearly zero over the asphalt surface. Hence, the sensible heat flux over the asphalt surface was far more than that of the bare soil surface. The sensible heat flux over the asphalt surface showed about 20∼30 W/㎡ during the night. It was released from asphalt surface which have far more heat capacity than that of bare soil surface.

A Study on Design Characteristics of Yeosu Circulating Fluidized Bed Boiler (여수화력 순환유동상 보일러의 설계특성 고찰)

  • Kim, Jae-Sung;Lee, Jong-Min;Kim, Dong-Won;Kim, Tae-Hyun;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • 340 MWe circulating fluidized bed (CFB) boiler in Yeosu power station is under construction. The circulating fluidized bed boiler in the Yeosu power plant has a number of differences from other domestic boilers in terms of scale and design. Evaluation of design parameters of the Yeosu CFB boiler should be required because the direct application of existing technology is limited. In this study, design characteristics of the Yeosu CFB boiler was summarized. And thermogravimetric analysis was conducted with comparing other rank coals. Watersteam side heat absorption, flue gas temperature and heat transfer coefficient were calculated by heat and mass balance. Design parameters for the Yeosu CFB boiler were discussed along with typical value in the CFB design range.

Study on the Multi-Zone Furnace Analysis Method for Power Plant Boiler (발전용 보일러에 대한 다중영역분할 화로해석 기법의 활용성 연구)

  • Baek, SeHyun;kim, Donggyu;Lee, Jang Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.427-432
    • /
    • 2020
  • In this study, a multi-zone furnace analysis method that couples a 1D energy and mass balance calculation with a 3D radiative heat transfer calculation is tested in order to verify its reliability. The calculated results for a domestic 500 MW capacity coal-fired boiler furnace were compared with the design data of the boiler manufacturer and CFD analysis, and a good agreement was achieved. Although this calculation method is less sophisticated than the CFD furnace analysis, it has an advantage in terms of calculation time while being able to provide the furnace behavior according to the fuel characteristics and operational variable changes. Therefore, it is expected to be useful for boiler operation diagnosis and daily fuel/operation planning.