• 제목/요약/키워드: Heat and mass transfer performance

검색결과 331건 처리시간 0.029초

스파아크 점화기관의 사이클 시뮬레이션과 실험적 방법에 의한 성능, 배출가스, EGR효과의 예측에 관한 연구 (The prediction of performance, exhaust emissions and EGR effect of a spark ignition engine by cycle simmulation and experimental method)

  • 정용일;성낙원
    • 오토저널
    • /
    • 제8권2호
    • /
    • pp.31-42
    • /
    • 1986
  • The prediction of performance, exhaust emissions and EGR effect is made by the SI engine cycle simulation. In this simulation several models are employed - two zome, thermodynamic combustion, mass fraction burned, heat transfer, chemical equilibrium, chemical kinetics for NOx, laminar flame speed for ignition delay. The chemical species in burned gas considered are 13 species-CO$_{2}$, CO, $O_{2}$, H$_{2}$O, H$_{2}$,OH, H, O, N$_{2}$, NO$_{2}$, N, Ar - and the cylinder pressure, burned and unburned zone temperature and composition of gas are calculated at each crank angle through the compression, ignition delay, combustion and expansion process. To check the validity of the model, experimental study is done for measuring emissions, combustion pressure and engine output. The predicted values for pressure and emissions show qualitative agreement with the measured data and the EGR effect also shows similar tendency.

  • PDF

일정 전류에서 연료전지의 비정상 특성 (Transient Characteristics of Fuel Cell Stack at Continuous Current Discharge)

  • 박창권;정귀성;오병수
    • 한국수소및신에너지학회논문집
    • /
    • 제14권3호
    • /
    • pp.195-206
    • /
    • 2003
  • Polymer electrolyte membrane fuel cells(PEMFC) are very interesting power source due to high power density, simple construction and operation at low temperature. But they have problems such as high cost, improvement of performance and effect of temperature. This problems can be approached using mathematical models which are useful tools for analysis and optimization of fuel cell performance and for heat and water management, in this paper, transient model consists of various energy terms associated with fuel cell operation using the mass and energy balance equation. And water transfer in the membrane is composed of back diffusion and electro-osmotic drag. The temperature calculated by transient model approximately agreed with the temperature measured by experiment in constant current condition.

고체산화물 연료전지의 동적 성능 특성 해석 (Analysis of Dynamic Performance of Solid Oxide Fuel Cells)

  • 양진식;손정락;노승탁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1652-1657
    • /
    • 2004
  • Model for the dynamic simulation of dynamic behaviors of a solid oxide fuel cell (SOFC) is provided. This model is based upon (1) coupled mass and heat transfer characteristics and (2) important chemical reactions such as electrochemical and reforming reaction in high temperature fuel cells such as SOFC. It is found that the thermal inertia of solid materials in SOFC plays an important role to the dynamic behavior of cell temperature. Dynamic characteristics of cell voltage, power and chemical compositions with different levels of load changes are investigated.

  • PDF

LED 가로등용 압출형 방열 구조물 경량화를 위한 최적 설계 (Design Optimization of an Extruded-type Cooling Structure for Reducing the Weight of LED Streetlights)

  • 박승재;이태희;이관수
    • 설비공학논문집
    • /
    • 제28권10호
    • /
    • pp.394-401
    • /
    • 2016
  • The configuration of an extruded-type cooling structure was optimized for the light-emitting diode (LED) streetlights that have recently replaced convectional metal halide streetlights for energy saving. Natural convection and radiative heat transfer over the cooling structure were simulated using a numerical model with experimental verification. An improved cooling structure type was suggested to overcome the previous performance degeneration, as confirmed by analyzing the thermal flow around the existing cooling structure. A parameter study of the cooling structure geometries was also conducted and, based on the numerical results, the configuration was optimized to reduce the weight of the cooling structure. Consequently, the mass of the cooling structure was reduced by 60%, while the thermal performance was improved by 10%.

갑작스런 부하 변동에 따른 고체산화물 연료전지의 동적 성능 거동 특성에 관한 연구 (A Study on the Dynamic Performance Behavior of Solid Oxide Fuel Cells with Stepwise Load Changes)

  • 손정락;노승탁;양진식
    • 대한기계학회논문집B
    • /
    • 제29권4호
    • /
    • pp.477-484
    • /
    • 2005
  • Model fer the dynamic simulation of dynamic behaviors of a solid oxide fuel cell (SOFC) is provided. This model is based upon (1) coupled mass and heat transfer characteristics and (2) important chemical reactions such as electrochemical and reforming reactions in high temperature fuel cells such as SOFC. It is found that the thermal inertia of solid materials in SOFC plays an important role to the dynamic behavior of cell temperature. Dynamic characteristics of cell voltage, power, and chemical compositions with different levels of load change are investigated.

A MFC Control Algorithm Based on Intelligent Control

  • Lee, Seok-Ki;Lee, Seung-Ha;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1295-1299
    • /
    • 2003
  • The Mass Flow Controller(MFC) has become crucial in semiconductor manufacturing equipments. It is an important element because the quality and the yield of a semiconductor process are decided by the accurate flow control of gas. Therefore, the demand for the high speed and the highly accurate control of MFCs has been requested. It is hard to find an article of the control algorithm applied to MFCs. But, it is known that commercially available MFCs have PID control algorithms. Particularly, when the system detects the flow by way of heat transfer, MFC control problem contains the time delay and the nonlinearity. In this presentation, MFC control algorithm with the superior performance to the conventional PID algorithm is discussed and the superiority is demonstrated through the experiment. Fuzzy controller was utilized in order to compensate the nonlinearity and the time delay, and the performance is compared with that of a product currently available in the market. The control system, in this presentation, consists of a personal computer, the data acquisition board and the control algorithm carried out by LabWindows/CVI program on the PC. In addition, the method of estimating an actual flow from sensor output containing the time delay and the nonlinearity is presented. In conclusion, according to the result of the experiment, the proposed algorithm shows better accuracy and is faster than the conventional controller.

  • PDF

대향류형 냉각탑에 대한 설계 및 성능해석을 위한 수치해석적 연구 (Numerical study for performance analysis and design of a counterflow type cooling tower)

  • 이상윤;이정희;최영기;유홍선
    • 설비공학논문집
    • /
    • 제10권5호
    • /
    • pp.535-549
    • /
    • 1998
  • A numerical study for performance analysis of a counterflow type forced draft tower and natural draft cooling tower has been performed based on the method using the finite volume method with non-orthogonal body fitted and non-staggered grid system. For solving the coupling problem between water and air, air enthalpy balance, moisture fraction balance, water enthalpy balance, and water mass balance equations are solved with Navier-Stoke’s equations simultaneously. For the effect of turbulence, the standard k-$\varepsilon$ turbulent model is implied in this analysis. The predicted result of the present analysis is compared with the experimental data and the commercial software result to validate the present study, The predicted results show good agreement with the experimental data and the commercial software result. To investigate the influence of the cooling tower design parameters such as approach, range and wet bulb temperature, parametric studies are also peformed.

  • PDF

Numerical Study for the Performance Analysis and Design of a Crossflow- Type Forced Draft Cooling Tower

  • Choi, Young-Ki;Kim, Byung-Jo;Lee, Sang-Yun;Lee, Jung-Hee
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제8권1호
    • /
    • pp.1-13
    • /
    • 2000
  • A numerical study for performance analysis of a crossflow-type forced draft cooling tower has been performed based on the finite volume method with non-orthogonal body fitted, and non-staggered grid system. For solving the coupling problem between water and air, air enthalpy, moisture fraction, water enthalpy, and water mass balance equations are solved with Navier-Stoke's equations simultaneously. For the effect of turbulence, the standard k-$\varepsilon$ turbulent model is implied in this analysis. The predicted result of the present analysis is compared with the experimental data and the commercial software result to validate the present study. The predicted results show good agreement with the experimental data and the commercial software result. To investigate the influence of the cooling tower design parameters such as approach, range and wet bulb temperature, parametric studies are also performed.

  • PDF

디젤 SCR 후처리장치 내 공간속도가 NOx 저감에 미치는 영향 (Effect of Space Velocity on the DeNOx Performance in Diesel SCR After-Treatment System)

  • 왕태중;백승욱;강대환;길정기;여권구
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.49-54
    • /
    • 2006
  • The present study conducted a numerical modeling on the diesel SCR (selective catalytic reduction) system using ammonia as a reductant over vanadium-based catalysts $(V_2O_5-WO_3/TiO_2)$. Transient modeling for ammonia adsorption/desorption on the catalyst surface was firstly carried out, and then the SCR reaction was modeled considering for it. In the current catalytic reaction model, we extended the pure chemical kinetic model based on laboratory-scale powdered-phase catalyst experiments to the chemico-physical one applicable to realistic commercial SCR reactors. To simulate multi-dimensional heat and mass transfer phenomena, the SCR reactor was modeled in two dimensional, axisymmetric domain using porous medium approach. Also, since diesel engines operate in transient mode, the present study employed an unsteady model. In addition, throughout simulations using the developed code, effects of space velocity on the DeNOx performance were investigated.

  • PDF

Volume-Junction Method를 이용한 우주왕복선 액체로켓엔진 열교환기 모델링 (Modeling of Space Shuttle Main Engine heat exchanger using Volume-Junction Method)

  • 차지형;고상호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.213-217
    • /
    • 2017
  • 액체로켓엔진 고장에서 시동과정이 30% 이상을 차지하며 특히, 우주왕복선 주 엔진(Space Shuttel Main Engine, SSME)은 2%의 밸브위치 오차 또는 0.1초의 시간오차와 같은 작은 변화에도 급격하게 변화하는 매우 민감한 시스템으로 시동과정의 모델링이 중요하다. 하지만, 시동과정에서 비선형 질량 유량과 열전달 특성 때문에 많은 어려움이 발생한다. 본 논문에서는 이를 해결하기 위하여 부분적인 전산유체해석(Computational Fluid Dynamics, CFD) 방법을 사용하였으며 본 논문에서는 구성품의 모델링을 수행하여 정상상태에서 확인을 하였다.

  • PDF