• Title/Summary/Keyword: Heat and Flow analysis

Search Result 2,041, Processing Time 0.032 seconds

A study on an Interface Tracking Algorithm in Friction Stir Welding based on Computational Fluid Dynamics Analysis (전산유체역학을 활용한 마찰교반용접의 해석적 접근에서 표면추적을 위한 알고리즘 연구)

  • Kim, Su-Deok;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.12-16
    • /
    • 2016
  • Friction stir welding(FSW) was studied using commercial tool, FLOW-3D. The purpose of this study is to suggest a method to apply frictional heat in Computational fluid dynamics(CFD) analysis. Cylindrical tool shape was used, and the interface cells between tool surface and workpiece were tracked by its geometrical relations in order to consider the frictional heat in FSW. After tracking the interface cells, average area concept was used to calculate the frictional heat, which is related to interface area. Also three-dimensional heat source and visco-plastic flow were modeled. The frictional heat generation rate calculated numerically from the suggested algorithm was validated with the analytical solution. The numerical solution was well matched with the analytical solution, and the maximum percentage of error was around 3%.

Design and heat transfer optimization of a 1 kW free-piston stirling engine for space reactor power system

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2184-2194
    • /
    • 2021
  • The Free-Piston Stirling engine (FPSE) is of interest for many research in aerospace due to its advantages of long operating life, higher efficiency, and zero maintenance. In this study, a 1-kW FPSE was proposed by analyzing the requirements of Space Reactor Power Systems (SRPS), of which performance was evaluated by developing a code through the Simple Analysis Method. The results of SAM showed that the critical parameters of FPSE could satisfy the designed requirements. The heater of the FPSE was designed with the copper rectangular fins to enhance heat transfer, and the parametric study of the heater was performed with Computational Fluid Dynamics (CFD) software STAR-CCM+. The Performance Evaluation Criteria (PEC) was used to evaluate the heat transfer enhancement of the fins in the heater. The numerical results of the CFD program showed that pressure drop and Nusselt number ratio had a linear growth with the height of fins, and PEC number decreased as the height of fins increased, and the optimum height of the fin was set as 4 mm according to the minimum heat exchange surface area. This paper can provide theoretical supports for the design and numerical analysis of an FPSE for SRPSs.

DEVELOPMENT OF A GENERAL PURPOSE THERMO/FLUID FLOW ANALYSIS PROGRAM NUFLEX WITH WALL IMPINGEMENT AND HEAT TRANSFER ANALYSIS MODEL OF LIQUID FILM (충돌분무와 액막의 열전달 해석모델을 고려한 범용 열/유체 프로그램 NUFLEX의 개발)

  • Kim, H.J.;Ro, K.C.;Ryou, H.S.;Hur, N.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.68-72
    • /
    • 2008
  • NUFLEX is a general purpose thermo/fluid flow analysis program which has various physical models including spray. In NUFLEX, spray models are composed of breakup and collision models of droplet. However, in case of diesel engine, interaction between wall-film and impingement model considering heat transfer is not coded in NUFLEX. In this study, Lee & Ryou impingement & wall-film model considering heat transfer is applied to NUFLEX. For the verification of this NUFLEX program, numerical results are compared with experimental data. Differences of film thickness and radius between numerical results and experimental data are within 10% error range. The results show that NUFLEX can be used for comprehensive analysis of spray phenomena.

NUMERICAL STUDY FOR COOLING CAPACITY IMPROVEMENT OF ENGINE ROOM ENCLOSURE SYSTEM (엔진실 차폐 시스템의 냉각성능 개선을 위한 수치적 연구)

  • Bae, Y.S.;Yoo, G.J.;Choi, H.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.39-45
    • /
    • 2009
  • In engine room, proper enclosure system is preferable for reducing noise level but the enclosure system in the engine room causes bad influence on cooling performance due to poor ventilation. Cooling efficiency of the enclosure system can be improved by varying fan speed and proper flow path for ventilation. In this study, numerical analysis is performed to assess cooling effect of the enclosure system using finite volume method. The RNG k-$\varepsilon$ model is adopted for turbulence model along with heat exchanger model and porous media model for heat exchanger analysis, and moving reference frame model for rotational fan. Verification result shows reasonable agreement with experimental data. Analysis results show direct effect of velocity and temperature distribution on cooling ability in the enclosure system. Enclosure system of case B shows high heat transfer coefficient and has the smallest area ratio of opened flow passages which is good for noise level reduction.

Thermal flow analysis in heat regenerator with spheres (구형축열체를 이용한 축열기내 열유동 해석)

  • 조한창;조길원;이용국
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.359-364
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of regenerative combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerator with spherical particles, were numerically analyzed to evaluate the heat transfer and pressure losses and to suggest the parameter for designing heat regenerator. It is confirmed that the computational results, such as air preheat temperature, exhausted gases outlet temperature, and pressure losses, agreed well with the experimental data conducted from Chugairo. The thermal flow in heat regenerator varies with porosity, configuration of regenerator and diameter of regenerative particle. Assuming a given exhaust gases temperature at the regenerator outlet, the regenerator length need to be linearly increased with inlet Reynolds number of exhaust gases. It is considered that inlet Reynolds number of exhaust gases should be introduced as a regenerator design parameter.

  • PDF

A Numerical Analysis of Flow Characteristics in a Heat Recovery Steam Generator with the Change of Inlet Flow Conditions (배열회수보일러(HRSG)의 입구유동 경계조건에 따른 유동특성 변화에 관한 연구)

  • Kim, Tae-Kwon;Lee, Boo-Yoon;Ha, Ji-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.53-57
    • /
    • 2011
  • The present study has been carried out to analyze the flow characteristics of a heat recovery steam generator with the change of inlet flow conditions by using numerical flow analysis. The inlet of HRSG corresponds the outlet of gas turbine exit and the flow after gas turbine has strong swirl flow and turbulence. The inlet flow condition of HRSG should be included the exit flow characteristics of gas turbine. The present numerical analysis adopted the flow analysis result of gas turbine exit flow as a inlet flow condition of HRSG analysis. The computational flow analysis result of gas turbine exit shows that the maximum axial velocity appears near circular duct wall and the maximum turbulent kinetic energy and dissipation rate exist relatively higher gradient region of axial velocity. The comparison of flow analysis will be executed with change of inlet turbulent flow condition. The first case is using the inlet turbulent properties from the result of computational analysis of gas turbine exit flow, and the second case is using the assumed turbulent intensity with the magnitude proportional to the velocity magnitude and length scale. The computational results of flow characteristics for two cases show great difference especially in the velocity field and turbulent properties. The main conclusion of the present study is that the flow inlet condition of HRSG should be included the turbulent properties for the accurate computational result of flow analysis.

Numerical Analysis on the Heat Transfer Characteristics of Multiple Slot Jets at the Surface of Protruding Heated Blocks (충돌제트의 간격변화에 따른 발열블록 표면에서의 열전달 특성에 관한 수치해석)

  • 박시우;정인기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.229-237
    • /
    • 2003
  • The flow and heat transfer characteristics at the surface of two-dimensional protruding heated blocks using confined impingement multiple slot jets were computationally investigated Numerical predictions were made for round-edged nozzles at several nozzle-to-target plate spacings and jet-to-jet distances, with turbulent jet Reynolds numbers ranging from 2000 to 7800. The commercial finite-volume code FLUENT was used to solve the heat transfer characteristics and flow fields using a RNG $\textsc{k}-\varepsilon$ model. The computed heat transfer characteristics at the surface of heated blocks were in good qualitative agreement with previous experimental data The results of heat transfer characteristics on the surface of protruding heated blocks are important considerations in electronics Packaging design.

A Study on Performance Analysis of the Bubble Pump in Solar Water Heater System (태양열 온수기 시스템에 적용된 기포펌프의 성능평가에 대한 연구)

  • Lee, Kwang-Sung;Li, Xuesong;Jin, Zhenhua;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2310-2315
    • /
    • 2008
  • In this paper, study on performance analysis of bubble pump on the domestic solar water heater system is presented. Device of this experiment is consisted of bubble pump, solar collector and heat exchanger. At the mean time, this system have attached temperature sensors and pressure sensors at bubble pump. In addition, the flow meter was installed at outlet of heat exchanger. And then result of experimental study, average value of the heat exchange amount in heat exchanger was about 7.9kcal/hr, the maximum value of the heat amount in water tank($0.4m^3$) was 489.7kcal/hr and the maximum value of the mass flow rate in bubble pump was about $0.5{\ell}/min$.

  • PDF

Effects of the Changes in Flow Pattern on Convective Heat Transfer in the Vicinity of Pipe Elbow (유동형태 변화가 배관 곡관부 대류열전달에 미치는 영향)

  • Song, Seung-Hyun;Yoo, Hoseon
    • Plant Journal
    • /
    • v.15 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • In this study, by varying flow patterns, which is one of the hydraulic factors of FAC, a strategy to reduce pipe wall thinning by mass transfer has been investigated. A similarity between heat transfer and mass transfer was verified via theoretical analysis, and local convective heat transfer coefficients were analyzed using a commercial numerical analysis program. When ribs were installed inside and outside of the internal surface in the straight section of the pipe, the maximum local heat transfer coefficient was shown to decrease substantially by up to 24.9% compared to the basic flow depending on the position and shape of ribs. If a guide vein was inserted in the pipe elbow, the maximum local heat transfer coefficient decreased by up to 26.7% compared to the basic flow depending on the internal surface area of the pipe by the guide vein.

Heat transfer enhancement in gas tungsten arc welding using azimuthal magnetic fields generated by external current

  • Kim, Yiseul;Lee, Jaewook;Liu, Xiaolong;Lee, Boyoung;Chang, Yunlong
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.113-125
    • /
    • 2017
  • This paper proposes the idea to enhance the heat transfer in Gas Tungsten Arc Welding (GTAW) by using the azimuthal magnetic field. The azimuthal magnetic field generated by the external currents makes the Lorentz force stronger, and consequently improves the heat transfer by the faster flow movement. The enhanced heat transfer might improve the welding performance by increasing the temperature at the workpiece. To validate the proposed idea, a two-dimensional axi-symmetric model of GTAW is built, and the multiphysics simulation of GTAW is carried out. As the analysis result, the distributions of electric current, electromagnetic fields, arc flow velocity, and temperature are investigated. Then, the proposed idea for heat transfer enhancement is validated by comparing the Lorentz force, flow velocity, and temperature distribution with and without azimuthal magnetic fields.