• Title/Summary/Keyword: Heat and Flow analysis

Search Result 2,038, Processing Time 0.027 seconds

Thrust and Flow Visualization according to Length of Condenser Section of Open Pulsating Heat Pipe (개방형 구조의 진동형 히트파이프의 응축부 길이에 따른 추력 및 유동 가시화)

  • Minjae Son;Jongwook Choi
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.57-64
    • /
    • 2023
  • An open pulsating heat pipe operates continuously by inflow and outflow fluids through an open-type condenser. The open pulsating heat pipe is a device capable of obtaining the thrust due to the variation of internal pressure during phase change. Therefore, the open pulsating heat pipe is a suitable device to move fluids if the heat source such as waste heat exists. Many numerical studies have not been sufficiently conducted on the open pulsating heat pipe. In this study, the numerical analysis of the open pulsating heat pipe is performed according to the length of the condenser section. The OpenFOAM software is used to obtain the thrust and the flow visualization for the open pulsating heat pipe.

Cooling Characteristics on the Forced Convection of an Array of Electronic Components in Channel Flow (I) - The Effect of H/B (without the Heat Sink) - (채널 유동장 내에 배열된 전자부품의 강제대류 냉각 특성에 관한 연구(I) -채널과 발열부품의 높이 비(H/B)의 영향(히트싱크가 부착되지 않은 경우)-)

  • Kim, Kwang-Soo;Yang, Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.73-80
    • /
    • 2006
  • Present study is concerned with an experimental study on the cooling characteristics of heat-generating components arranged in channels which are made by printed circuit boards. To assess the thermal performance of the heat-generating components arranged by $5\times11$ in flow channel, three variables are used: the velocity of the fluid at the entrance, the height of channel, and row number of the component. The cooling characteristics of the heat-generating components such as the surface temperature rise, the adiabatic temperature rise, the adiabatic heat transfer coefficient, and the effect of thermal wake are compared with the result of the experiment and the numerical analysis. Based on the experiment analysis, some conclusions can be drawn: First of all, the experiment and numerical analysis are identical comparatively; the heat transfer coefficient increases as H/B decreases. Howeve., when H/B is over 7.2, the effect of H/B is rather trivial. The effect is the biggest at the first component from the entrance, and it decreases until the fully developed flow, where it becomes very consistent. The thermal wake function calculated for each row decreases as H/B increases.

Heat Transfer Analysis of a Heat Exchanger for an Air-Compressor of a Railway Vehicle Based on Cooling Air Flow Measurement (냉각공기 유속 측정에 기반한 철도차량용 공기압축기 열교환기의 열전달 특성 분석)

  • Ahn, Joon;Kim, Moo Sun;Jang, Seongil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.9
    • /
    • pp.447-454
    • /
    • 2017
  • In this study, local velocity distribution of cooling air in a heat exchanger used in an air compressor for a railway car was measured and heat transfer characteristics of the heat exchanger were analyzed. First, heat transfer coefficient and fin performance of the cooling air side were predicted and was checked if the fin of the heat exchanger was effectively used. Distribution of air flow rate at high temperature side was predicted through pipe network analysis and heat resistance at high temperature and low temperature side were predicted and compared. Spatial distribution of temperature in the interior and surface of the square channel constituting high-temperature side was predicted and appropriateness of the size of the heat exchanger was examined. As a result of the analysis, the present size of the heat exchanger could be reduced and it could be effective to promote heat transfer inside the heat exchanger rather than outside to improve performance of the heat exchanger.

Analysis of the cooling system for a superconducting generator (초전도발전기의 냉각시스템 해석)

  • Kim, K.W.;Chung, T.E.;Shin, H.-C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.446-453
    • /
    • 1997
  • The superconducting winding in rotor of a superconducting generator should be kept at extremely low temperature of 4-5 K to maintain the superconducting state. For this purpose the liquefied helium is used for the coolant and it is very important to analyze and design a cooling system making effective use of the coolant. In this paper, the typical heat exchanger of a superconducting generator with the flow passage is analyzed with regard to the thermal equilibrium. An experimental constant relevant to the flow condition in the flow passage is determined with heat exchange experiments in cryostat. Also a new heat exchanger with porous material is proposed and designed. Results of the numerical analysis for the temperature distributions for the torque tube and the coolant are reported and the efficiency of the heat exchanger is discussed from the viewpoint of amounts of coolant needed.

  • PDF

Optimization of the Gas Gas Heater Element for Desulfurization Equipment through Flow Analysis (유동해석을 통한 신형 탈황설비용 GGH 요소 최적화)

  • Ryu, B.J.;Oh, B.J.;Baek, S.G.;Kim, H.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.599-602
    • /
    • 2008
  • This paper deals with the optimization of Gas-Gas-Heater elements for desulfurization equipment through flow analysis. The flow analysis model used in the paper is ${\kappa}-{\varepsilon}$ turbulent flow model. Temperature and flow velocity distributions for three types of panel elements are calculated. Through the analysis the following conclusions are obtained. Firstly, pressure differences of between inlet and outlet for three types of panel elements do not exceed in the standard pressure difference. Secondly, it is expected that NU-type panel element having wide area of heat transfer will be more effective in the aspect of the heat transfer.

  • PDF

Analysis of gas flow and thermal deformation in a muffler (머플러의 유체 유동 및 연성 변형 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.14-18
    • /
    • 2010
  • Car muffler has the role to form the exhaust gas from high temperature- pressure to lower level and reduce the generated noise. Because of this role, its durability decrease as deformation by heat is occurred. This study is to analyze the flow of exhaust gas inside muffler and its coupled thermal deformation with 3-D modeling and ANSYS. There is the fastest flow at the exit of muffler with the maximum velocity of 54 m/s. And the maximum deformation or equivalent stress is shown at this model respectively as 0.00435 mm or 3414.4 MPa by the influence of heat and pressure at part of intersection with inlet and body of muffler.

A Study of Heat Flow and Residual Stress Analysis in Pipe-plate Gas Metal Arc Brazing (파이프-평판 GMAB 접합부의 열유동 및 잔류음력 해석에 관한 연구)

  • 이태영;김재웅;이목영;정평석
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.413-422
    • /
    • 2001
  • In this study. two-dimensional heat flow and residual stress in arc brazing to join the pipe and plate structure were analyzed by using a commercialized FEM package. Advantages offered by arc brazing are that strong joints can be produced with lower heat input than that of previous gas metal arc welding and narrower heat affected zone can usually be obtained than that in the case of torch brazing. To investigate the effects of process variables and minimize the thermal effects on the structure, this study presents a method for analyzing the heat flow and residual stress in arc brazing process according to variables such as traveling speed, torch angle and position. The simulation results were compared with the experimental ones to verify the numerical analysis method. The experiments include the measurement of HAZ size from the section of joints and residual stresses by using strain gages named 'section method'. A comparatively good agreement between the results of numerical analysis and experimental ones could be obtained in both of the temperature distribution and residual stress of the brazed structure. Using the proposed numerical analysis method, the process parameters were evaluated to get proper arc brazing conditions.

  • PDF

Two dimensional flow and heat/mass transfer characteristics in rectangular wavy duct with corrugation angle (2차 유동 영역에서 꺽임각 변화에 따른 주름진 사각 덕트에서의 열/물질전달 및 유동 특성)

  • Kwon, Hyun-Goo;Hwang, Sang-Dong;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2267-2272
    • /
    • 2007
  • The present study investigates the two dimensional flow and heat/mass transfer characteristics of wavy duct with various corrugation angles. For the heat/mass transfer coefficients, a naphthalene sublimation technique is used. Numerical analysis and wall pressure measurement show detailed two dimensional flow features. The corrugation angles change from 145$^{\circ}$ to 100$^{\circ}$. The operating Reynolds numbers based on the duct hydraulic diameter vary from 700 to 3,000. The duct aspect ratio maintains 7.3. On the pressure wall, strong flow mixing enhances heat/mass transfer coefficients at the front position. In addition, the rear side of pressure wall, the near of peak, is affected by the acceleration and the shedding of main flow. On the suction wall, however, flow separation and reattachment lead to the valley and the peak of heat/mass transfer coefficient. Also, highly increasing boundary layer at the suction wall affects the decrease of heat/masst transfer. As decreasing corrugation angles, the spanwise average Sherwood number increases and the peak or the valley positions of the local Sherwood number are varied.

  • PDF

Analysis of cooling phenomenon of water with the supercooled (과냉각을 동반한 순수물의 냉각현상 해석)

  • Chu, Mi-Seon;Yun, Jeong-In;Kim, Jae-Dol;Kamata, Yoshinobu;Kato, Toyofumi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.862-872
    • /
    • 1997
  • Ice formation in a horizontal circular cylinder has been studied numerically. From the numerical analysis results, it was found that there were three types of freezing pattern and that freezing phenomenon was affected largely by density inversion and cooling rate. The type of freezing pattern largely depends on the secondary flow which is generated by density inversion. When supercooling energy is released before the development of the secondary flow, the annular ice layer grows. If the energy is released when the secondary flow is considerably developed and the supercooled region is removed to the upper half part of the cylinder, an asymmetric ice layer grows. And if the energy is released after perfect development of the secondary flow, instantaneous dendritic ice formation over the full region occurs. Furthermore, this secondary flow was found to have an effect on heat transfer characteristics. The heat transfer rate becomes small at the instant when the secondary flow is generated, but becomes large with the development of the flow. It's concluded that for the facilitation of heat transfer it is desirable to keep water in liquid phase until the secondary flow is perfectly developed. This study gave an instruction of performance improvement of capsule type ice storage tank.

CFD Analysis on Flow Characteristics of Oil Film Coating Nozzle (유막 코팅 노즐의 유동특성에 관한 CFD해석)

  • Jung, Se-Hoon;Ahn, Seuig-Ill;Shin, Byeong-Rog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.5
    • /
    • pp.50-56
    • /
    • 2008
  • Metal cutting operations involve generation of heat due to friction between the tool and the pieces. This heat needs to be carried away otherwise it creates white spots. To reduce this abnormal heat cutting fluid is used. Cutting fluid also has an important role in the lubrication of the cutting edges of machine tools and the pieces they are shaping, and in sluicing away the resulting swarf. As a cutting fluid, water is a great conductor of heat but is not stable at high temperatures, so to improve stability an emulsion type mixed fluid with water and oil is often used. It is pumped over the cutting site of cutting machines as a state of atomized water droplet coated with oil by using jet. In this paper, to develop cutting fluid supplying nozzle to obtain ultra thin oil film for coating water droplet, a numerical analysis of three dimensional mixed fluid Jet through multi-stage nozzle was carried out by using a finite volume method. Jet flow characteristics such as nozzle exit velocity, development of mixing region, re-entrance and jet intensity were analyzed. Detailed mixing process of fluids such as air, water and oil in the nozzle were also investigated. It is easy to understand complex flow pattern in multi-stage nozzle. Important flow Information for advance design of cutting fluid supplying nozzle was drawn.