• 제목/요약/키워드: Heat aging

검색결과 578건 처리시간 0.081초

Effect of Solution Treatment and Short Time Aging on Mechanical Properties of Cast Ti-6Al-4V Alloy

  • Oh, Seong-Tak;Woo, Kee-Do;Kwak, Seung-Mi;Kim, Jae-Hwang
    • 한국재료학회지
    • /
    • 제26권5호
    • /
    • pp.287-291
    • /
    • 2016
  • The effect of heat treatment on the microstructure and mechanical properties of cast Ti-6%Al-4%V alloy was investigated. Heat treatment of cast Ti-6Al-4V alloy was conducted by solution treatment at $950^{\circ}C$ for 30 min; this was followed by water quenching and then aging at $550^{\circ}C$ for 1 to 1440 min. The highest hardness of the heat-treated specimens was obtained by solution treatment and subsequent aging for 5 min due to precipitates of fine ${\alpha}$ that formed from retained ${\beta}$ phase. The tensile strength of this alloy increased without dramatic decrease of the ductility due to microstructural refinement resulting from the decomposition of ${\alpha}^{\prime}$ martensite into fine ${\alpha}$ and ${\beta}$ phases, and also due to the fine ${\alpha}$ phase formed from the retained ${\beta}$ phase by aging treatment for 5 min. In addition, this strengthening might be caused by the transformation induced plasticity (TRIP) effect, which is a strain-induced martensite transformation from the retained ${\beta}$ phase during deformation, and which occurs even after aging treatment at $550^{\circ}C$ for 5 min.

Defensive Behavior against Noxious Heat Stimuli Is Declined with Aging Due to Decreased Pain-Associated Gene Expression in Drosophila

  • Ghimire, Saurav;Kim, Man Su
    • Biomolecules & Therapeutics
    • /
    • 제23권3호
    • /
    • pp.290-295
    • /
    • 2015
  • Aging is defined as a collective process that alters organism's functional capacity and appearance over the course of life. Apart from an increase in susceptibility to many diseases, aging affects the cellular system that is responsible for decoding painful stimuli. Yet, aging-associated molecular mechanisms of pain perception remains elusive. Using Drosophila, we showed a decrease in temperature tolerance and a reduction in high temperature thermal avoidance with aging. Locomotor activity assay demonstrated that the age-dependent changes in heat nociception did not stem from the general decline in muscular activity. However, we identified pain-related gene expression alteration with aging. We anticipate that our findings would help opening a new window onto developing the optimal pain treatment for the elderly.

CuAINi 형상기억합금의 시효처리에 따른 상변태 거동 (Phase Transformation Behavior on Aging Treatment in CuAINi Shape Memory Alloy)

  • 앙권승;강조원
    • 열처리공학회지
    • /
    • 제6권4호
    • /
    • pp.213-222
    • /
    • 1993
  • This research was performed to investigate the transformation behavior and shape memory effect of Cu-13.5Al-4.5Ni(wt%) alloy with various aging temperature and time. The results obtained in this study are as follows: Transformation temperature was very increased when aging temperature is at $250^{\circ}C$. The variation of transformation temperature in first reverse transformation cycle and second was very significant, but there was little difference in case of 2nd and 3rd. Transformation temperature at various aging temperature was increased with increasing of aging temperature and time. Microvickers hardness was increased with increasing of aging temperature and time. It was found that ${\alpha}$ and ${\gamma}_2$ phase were created by aging of long time at high temperature.

  • PDF

A 6061 합금의 기계적 특성에 미치는 2단시효의 영향 (Effects of Two-Step Aging Treatment on the Mechanical Properties of 6061 Al Alloy)

  • 이보배;임항준;정걸채
    • 열처리공학회지
    • /
    • 제32권2호
    • /
    • pp.57-60
    • /
    • 2019
  • The impact of two-step treatment on the mechanical properties of the 6061 Al alloy was investigated by testing the hardness and electrical conductance values. After two-step aging treatment, the hardness and electrical conductivity of the alloy was increased, and if the first aging treatment temperature was lower than the secondary aging treatment temperature, both the hardness and the electrical conductivity were not increased. The higher the temperature of the first aging treatment, the higher the hardness. The temperature of the first aging treatment is $175^{\circ}C$, $150^{\circ}C$, $120^{\circ}C$, and the second is $175^{\circ}C$ and $120^{\circ}C$.

Effect of Pre-Aging Conditions on Bake-Hardening Response of Al-0.4 wt%Mg-1.2 wt%Si-0.1 wt%Mn Alloy Sheets

  • Lee, Kwang-jin;Woo, Kee-do
    • 대한금속재료학회지
    • /
    • 제49권6호
    • /
    • pp.448-453
    • /
    • 2011
  • Pre-aging heat treatment after solution heat treatment (SHT) of Al-0.4 wt%Mg-1.2 wt%Si-0.1 wt%Mn alloy sheets for auto-bodies was carried out to investigate the effect of pre-aging and its conditions on the bake-hardening response. Mechanical properties were evaluated by a tensile and Vickers hardness test. Microstructural observation was also performed using a transmission electron microscope (TEM). It was revealed that pre-aging treatments play a great role in the bake-hardening response. In addition, it was found that the sphere-shaped nanosized clusters that can directly transit to the needle-shaped ${\beta}$" phase during the paint-bake process, not being dissolved into the matrix, are formed at 343 K. The result, reveals that the dominant factor of the bake-hardening response is the pre-aging temperature rather than the pre-aging time.

음향방출법에 의한 SM45C 응력시효 처리재의 인장특성 평가 (An Evaluation of Tensile Characteristics of the Stress Aging Heat-treated SM45C Steel by Acoustic Emissions)

  • 이장규;박복남
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2009년도 춘계학술대회
    • /
    • pp.413-421
    • /
    • 2009
  • This paper investigates tensile characteristics of the stress aging heat-treated SM45C steel which are aging temperature at $250^{\circ}C$, $300^{\circ}C$, aging time at 1, 3 hours, and applied load at 300, 400N conditions by using acoustic emission. Most suitable aging condition was aging temperature $300^{\circ}C$, aging time 1 hour, and aging applied load 300N. And increased yield load 28.3% than non-treatment specimen in this condition. AE energy in elastic limit increased about 16.7 times than non-treatment specimen. When aging time is 3 hours, yield load decreased than other conditions that possibility is high to have itself defect on inside the specimen or coarse grain size precipitation is different in happened over-aging phenomenon. Especially, in case of $300^{\circ}C$, 3 hours and 400N condition appeared AE energy in elastic limit fairly high about 30 times than non-treatment specimen. This is considered by emit a lot of energies when material causes plastic deformation because the ductility increases on specimen by over-aging phenomenon.

  • PDF

EFFECTS OF AGING TREATMENT ON MICROSTRUCTURE AND STRENGTH OF WELD HEAT AFFECTED ZONE OF 6N01-T5 ALUMINUM ALLOY

  • Yoshida, Naoharu;Shibao, Masami;Ema, Mitsuhiro;Sasabe, Seiji;Hirose, Akio;Kobayashi, Kojiro F.
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.59-64
    • /
    • 2002
  • Effects of the aging treatments on the microstructure and strength of heat affected zone(HAZ) in the welds of a age-hardened Al-Mg-Si alloy, 5N01-T5, were investigated. The base metal aging treatments before MIG welding were conducted at 423K to 473K for 28.8ks Post weld heat treatment(PWHT) to recover the HAZ strength was performed at 448K for 28.8ks. Microstructure observations, hardness measurements and tensile tests were conducted to study properties of the MIG weld joints. The position of the softest region in HAZ where the hardness insufficiently recovered after natural aging and PWHT was at a distance of approximately 15mm from the center of the fusion zone. Hardness of the softest regions after natural aging and PWHT decreased with increase in the base metal aging temperature. TEM observation clarified that strengthening ${\beta}$"(Mg$_2$Si) precipitates and coarse ${\beta}$′ precipitates affected the hardnes of HAZ. Incomplete recover of hardness in HAZ after PWHT was caused by the precipitating of non-hardening ${\beta}$′ phase during the weld thermal cycle. In order to examine the effects of weldheat input and welding speed, the laser weld joints were also investigated and compared with the MIG weld ones. Laser welding had the narrower width of the softened regions in HAZ compared with MIG welding. The hardness of the softest regions of the laser welds after PWHT was higher than that of the MIG welds. Quantitative relations between hardness of the softest region and base metal aging temperature were obtained for both welding processes. Accordingly, the equations to estimate the strength of the weld joints after PWHT with varying base metal temperatures were proposed for MIG welding and laser welding.

  • PDF

경년열화 기간에 따른 원자력발전소용 비안전등급 케이블의 연소특성 분석 (Combustion Characteristics Analysis of a Non-class 1E Cable for Nuclear Power Plants according to Aging Period)

  • 김민호;이석희;이민철;이상규;이주은
    • 한국안전학회지
    • /
    • 제35권5호
    • /
    • pp.22-29
    • /
    • 2020
  • In this study, combustion and smoke release characteristics of a non-class 1E cable for nuclear power plants were investigated according to aging period. The aging was reproduced through an accelerated aging method for interval of 10 years :10, 20, 30 and 40 year, which was applied the Arrhenius equation. The cable was subjected to accelerated aging. In order to understand combustion and smoke release characteristics, the cone calorimeter test was performed according to the standard code of KS F ISO 5660-1. Heat release rate, mass loss rate, average rate of heat emission and smoke production rate were examined through cone calorimeter test. Fire performance index, fire growth index and smoke factor were derived from test results for the comparison of quantitative fire risk. When comparing the fire performance index and the fire growth index, the early fire risk tends to decrease as aging progresses, which might be attributed from the fact that the volatile substances of cables were evaporated. However, when comparing the heat release rate, average rate of heat emission and mass loss rate, which represent the mid and late periods of the fire risk, the values of accelerated aging cables were much higher than those of non-aged cable, which signifies the unstable formation of the char layer resulted in the change in the performance of flame retardants. In addition, the results from the smoke characteristics show that the accelerated aging cables were lager than the non-aged cables in terms of overall fire risk. These results can be used as baseline data when assessing fire risk of cables and establishing fire safety code for nuclear power plants.

한국산 시판 한지의 열화 특성 (Aging Characteristics of Marketing Korean Paper(Hanji))

  • 박성철;최미숙;임현아
    • 보존과학회지
    • /
    • 제25권2호
    • /
    • pp.161-169
    • /
    • 2009
  • 본 연구에서는 한국산 시판 4종 한지의 강제적 열화 조건인 습 건열처리를 통하여 한지의 광학적 물리적 특성의 변화를 측정, 비교 검토하여 봄으로써, 현재 시판 한지의 안정성을 규명하고자 하였다. 인공 열화 전후의 비교에서 광학적 물리적 성질은 습열처리보다 건열처리의 경우에서 더욱 감소폭이 컸는데, 백색도, whiteness는 흑피로 제조된 순지에서 가장 크게 감소하였고 불투명도 역시 전체적으로 상승하는 경향 속에 흑피에서 가장 높게 상승하였다. 열단장은 백피의 경우가 최종적으로 가장 높은 강도를 나타냈으며, 인열강도는 흑피에서 급속히 감소하였다. 파열강도는 습열처리의 경우, 열화 후반부에서는 백피와 흑피의 값이 거의 비슷하였으나 내절도는 백피의 경우가 다른 펄프보다 월등히 높아 단순비교는 어려웠지만 열화처리에도 비교적 높은 내절도를 나타내었다. 따라서 흑피가 백피에 비해 열화에 약하다는 것을 알 수 있었다. 또한 이외 다른 펄프를 혼합한 경우는 강도면에서 크게 감소함을 알 수 있었다. 결론적으로 한지는 습도에 비해 온도에 더 민감한 것으로 나타났다. 그러나 가장 높은 관심을 가졌던 묵즙에 대한 농도 및 색상의 열화는 특별한 경향을 발견하지 못하였다.

  • PDF

교류임피던스법에 의한 Nimonic 80A 초내열합금 시효열처리재의 부식거동 고찰 (The Corrosion Behavior Study by AC Impedance Method for the Aging Heat Treated Nimonic 80A Superalloy)

  • 백신영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권6호
    • /
    • pp.761-769
    • /
    • 1999
  • In this paper the effect of aging heat treatment to the Corrosion behavior for the Nimonic 80A superalloy was studied by AC Impedance methods. Tested solution was 3.5% with tempera-ture $25^{\circ}C$ Electro-chemical corrosion test were carried out for the Nimonic 80A super-alloy which solution heat treated at $1080^{\circ}C$ for 8 hours followed by aging heat treated at $650^{\circ}C,\;700^{\circ}C,\;750^{\circ}C\;800^{\circ}C$ and $850^{\circ}C$ with 16hours under vacuum environment. The obtained results were as follows; 1. Base metal and solution-treated materials were exhibited similar corrosion tendency as Ran-dle equivalent cell. The value of passive film resistance was 579 ohms for the base metal and 124,770 ohms for the solutionized metal such a difference was arose by the ${{\gamma}_^'}$ precipitate on the metal surface during heat treatment. 2. The measure value of $R_p$ for heat-treated at $650^{\circ}C,\;700^{\circ}C,\;800^{\circ}C$and $850^{\circ}C$ were 97,943, 93, 111, 26,961, 15,798 and 11,780ohm respectively. Which indicated that the passive film resistance Rp was reduced as aging temperature increased due to the growth of grain size and sensitization at the grain boundary. 3. The similar tendency was exhibited for corrosion behavior of the electro-chemical corrosion polarization method and AC impedance method and confirmed that AC impedance method was useful tool for corrosion research.

  • PDF