• Title/Summary/Keyword: Heat affected zone (HAZ)

Search Result 300, Processing Time 0.029 seconds

Effects of M-A Constituents on Toughness in the ICCG HAZ of SA508-cl.3 Pressure Vessel Steel (SA508-cl.3강의 ICCG HAZ의 인성에 미치는 M-A Constituentsm의 영향)

  • 권기선;김주학;홍준화;이창희
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.55-65
    • /
    • 1999
  • Metallurgical factors influencing toughness of the Intercritically Reheated Coarse-Grained Heat Affected Zone (ICCG HAZ) of multiple welded SA508-cl.3 Reactor Pressure Vessel Steel were evaluated. The recrystallized austenite formed along the prior austenite grain boundaries and late interfaced on heating to the intercritical range was transformed to bainite and/or martensite during cooling. The newly formed martensite always included some retained austenite(M-A constituents). The characteristics(amount, hardness, density, and size) of M-A constituents were found to be strongly associated with both peak temperature and cooling time(△t8/5(2)) of last pass. Toughness in the ICCG HAZ was deteriorated with increasing amount of M-A constituents which was increased with increasing the last peak temperature within the intercritical temperature range. Meanwhile, for the same intercritical peak temperature, toughness was decreased with increasing cooling time. When cooling time was short, the dominant factor influencing toughness of the ICCG HAZ was amount of M-A constituents. However, when cooling time was lengthened, the hardness difference between M-A constituents and softened matrix(tempered martensite) was found to be the dominant factor.

  • PDF

An Experimental Study on High Temperature Material Properties of Welded Joint (용접부의 고온 재료물성에 대한 실험적 연구)

  • Baek, Un-Bong;Yun, Gi-Bong;Seo, Chang-Min;Lee, Hae-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3096-3103
    • /
    • 2000
  • High temperature material properties of a welded joint were experimentally studied. Tensile and creep properties were measured for each part of weld metal. HAZ(heat affected zone) and parent metal at 538$^{\circ}C$. HAZ metal was obtained by a simulated heat treatment. Results showed that the order of tensile strength is weld>HAZ> parent both at 24$^{\circ}C$ and at 538$^{\circ}C$. Creep resistance was also the highest for weld metal and lowest for parent metal. Creep rupture life curves were obtained and converted to Monkman-Grant relation which is useful for life assessment. Use of the data obtained in this study is discussed.

Electrochemical Evaluation on Corrosion Property of Welding Zone of 22APU Stainless Steel (22APU 스테인리스강의 용접부위의 부식특성에 관한 전기화학적 평가)

  • Moon, Kyung-Man;Kim, Yun-Hae;Lee, Sung-Yul;Kim, Jong-Do;Lee, Myung-Hoon;Kim, Jin-Gyeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1162-1169
    • /
    • 2009
  • Two kinds of welding methods were carried out for 22APU stainless steel, one is a Laser welding and the other is the TIG welding. In this case, difference of corrosion characteristics of welded zone with two welding methods mentioned above was investigated with electrochemical methods such as measurement of corrosion potential, polarization curves and cyclic voltammogram etc.. Vickers hardness of all welded zone (WM:Weld Metal, HAZ:Heat Affected Zone, BM:Base Metal)in the case of Laser welding showed a relatively higher value than those of TIG welding. Futhermore their corrosion current density in all welding zone were also observed with a lower value compared to TIG welding. In particular corrosion current density of BM regardless of welding method indicated the lowest value than those of other welding zone. Intergranular corrosion was not observed at the corroded surface of all welding zone in the case of Laser welding, however it was observed at WM and HAZ with TIG welding, which is suggested that chromiun depletion due to forming of chromium carbide appears to WM and HAZ which is in the range of sensitization temperature. Therefore their zone can easily be corroded with more active anode. Consequently we can see that corrosion resistance of all welding zone of 22APU stainless steel can apparently be improved by using of Laser welding.

Control of Grain Size on Friction Stir Welded AZ31 and AZ91 (AZ31과 AZ91의 마찰교반용접부 결정립 크기 제어)

  • Gwon, Gi-Su;Lee, Chang-U;Kim, Mok-Sun;Sato, Yutaka S.;Kim, Jeong-Han
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.328-331
    • /
    • 2007
  • It was carried out to evaluate microstructure and mechanical properties of friction stir welded(FSW) on magnesium alloys. Two types magnesium alloy was used in this work, AZ31 wrought and AZ91 cast magnesium alloy. Microstructure near the weld zone showed general weld structures such as stir zone(SZ), thermo-mechanically affected zone(TMAZ) and heat affected zone(HAZ). In the AZ91 alloy, the SZ had a fine grain size and $\beta$ phase particles which were well distributed in matrix. It was characterized to redistribute by partial or full re-solution of the $\beta$ phase which is coarse in base metal during FSW processing. The hardness of the SZ slightly increase than the base metal in AZ31 Mg alloy.

  • PDF

MODELING OF THE BAINITE TRANSFORMATION KINETICS IN C-MN-MO-NI STEEL WELD CGHAZ

  • Sangho Uhm;Lee, Changhee;Kim, Joohak;JunhwaHong
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.276-281
    • /
    • 2002
  • A metallurgical model for bainite transformation kinetics in the coarse-grained heat affected zone(CGHAZ) on the basis of an Avrami-type equation was studied. Isothermal transformation tests were carried out to obtain the empirical equations for incubation time and Avrami kinetic constants for C-Mn-Mo-Ni steel. The effect of prior austenite grain size(PAGS) on the reaction rate of bainite was also investigated. Compared with experimental transformation behavior of bainite, the predicted behavior was in good agreement. It was also found that a smaller grain size retard the bainite reaction rate, contrary to the classical grain size effect and this is considered to be caused by constraint of grain size to bainite growth.

  • PDF

The Evaluation of Mixed Welded SM 490A Steel by Acoustic Emission (2) (음향방출법에 의한 SM 490A 강의 복합용접성 평가 (2))

  • 이장규;우창기;김봉각;윤종희;인승현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.363-370
    • /
    • 2003
  • The object of this study is to investigate the effect of compounded welding by using an acoustic emission (AE) signals and doing a source location for weld heat affected zone (HAZ) through tensile testing. This study was carried out a SM 490A high tension steel for electronic shielded metal arc welding (SMAW), $CO_2$ gas arc welding and TIG welding. Data displays are based on the measured parameters of the AE signals, along with environmental variables such as time and load. These history plots are displays showing the chronological course of the test. Also, source location gives the X- and Y-coordinates of the AE source.

  • PDF

The Effect of Weld Metal Copper Content on HAZ Cracking in Austenitic Stainless Steel welded with Al-brass

  • Lee, H.W.;Lee, J.S.;Choe, W.H.
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.152-154
    • /
    • 2005
  • Austenitic stainless steel has good weldability but is sensitive to hot cracking such as solidification crack and liquation crack. In this study, the specimens of dissimilar metals made between austenitic stainless steel and Al-brass were welded by GTAW process using four different filler metals. Cracks were detected in the heat-affected zone of the stainless steel when welded with CuAl, CuSn and NiCu filler metals, but no cracks were detected a Ni filler metal was used. The cracks propagated along the grain boundary in the heat affected zone near the fusion line to base metal of 316L stainless steel. The cracks were located inside the weld bead with very fine hairline crack. All cracks initiated at the fusion line and moved forward in the base metal. From energy dispersion spectroscopy (EDS), Cu peak was detected only in the crack-opening area.

  • PDF

Modeling of the Bainite Transformation kinetics in C-Mn-Mo-Ni Steel weld CGBAZ

  • Uhm, S.;Lee, C.;Kim, J.;Hong, J.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.11-14
    • /
    • 2002
  • A metallurgical model for bainite transformation kinetics in the coarse-grained heat affected zone(CGHAZ) on the basis of an Avrami-type equation was studied. Isothermal transformation tests were carried out to obtain the empirical equations for incubation time and Avrami kinetic constants for C-Mn-Mo-Ni steel. The effect of prior austenite grain size(PAGS) on the reaction rate of bainite was also investigated. Compared with experimental transformation behavior of bainite, the predicted behavior was in good agreement. It was also found that a smaller grain size retard the bainite reaction rate, contrary to the classical grain size effect and this is considered to be caused by constraint of grain size to bainite growth.

  • PDF

IRRADIATION EMBRITTLEMENT OF CLADDING AND HAZ OF RPV STEEL

  • Lee J.S.;Kim I.S.;Jang C.H.;Kimura A.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.405-410
    • /
    • 2006
  • Microstructural features and their related mechanical property changes in the 309L cladding and the heat affected zone (HAZ) of SA508 cl.3 steel were investigated through the use of TEM, tensile and small punch (SP) tests. The specimens were irradiated at 563 K up to the neutron fluences of $5.79{\times}10^{19}n/cm^2$ (>1MeV). The microstructure of the clad was mainly composed of a fcc ${\gamma}-phase$, a low percentage of bcc ${\delta}-ferrite$, and a brittle ${\sigma}-phase$. Along the weld fusion line there formed a heavy carbide precipitation with a width of $20{\sim}40{\mu}m$, showing preferential cracking during plastic deformation. The yield stress and ductile-to-brittle transition temperature (DBTT) of the irradiated clads increased. The origin of the hardening and the shift of the DBTT are discussed in terms of the irradiation-produced defect clusters of a fine size and brittle ${\sigma}-phase$.

Evaluation of the Plastic η-Factor Considering Strength Mismatch in a Narrow Gap Welding Part (I) (협계용접부 강도 불균일을 고려한 소성 η계수 평가 (I))

  • Huh, Yong;Kim, Hyung-Ick;Seon, Kwang-Sang;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.6
    • /
    • pp.504-511
    • /
    • 2008
  • This study evaluated the influence of the strength mismatch of HAZ for a plastic ${\eta}$-factor, which is the principle parameter determining the plastic portion of J-integral to assess the fracture toughness of the weldment. The specimen of tensile and hardness test was manufactured from the piping applying narrow-gap welding, and the mechanical properties of weldment, HAZ and a base metal were obtained. To perform the finite element analysis according to the ratio of strength mismatch, the material properties was chosen with the change of strength using the determination method of Ramberg-Osgood constant. Also, the influence of the strength mismatch of HAZ was determined using finite element analysis by those properties.