• 제목/요약/키워드: Heat accident

검색결과 340건 처리시간 0.027초

Multi-scale simulation of wall film condensation in the presence of non-condensable gases using heat structure-coupled CFD and system analysis codes

  • Lee, Chang Won;Yoo, Jin-Seong;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2488-2498
    • /
    • 2021
  • The wall film-wise condensation plays an important role in the heat transfer processes of heat exchangers, refrigerators, and air conditioner. In the field of nuclear engineering, steam condensation is often utilized in safety systems to remove the core decay heat under both transient and accident conditions. In particular, passive containment cooling system (PCCS), are designed to ensure containment safety under severe accident conditions. A computational fluid dynamics (CFD) scale analysis has been conducted to calculate the heat transfer rate of the PCCS. However, despite the increase in computing power, there are challenges in the long-term transient simulation of containment using CFD scale codes. In this study, a heat structure coupling between the CFD and system analysis codes was performed to efficiently analyze PCCS. In addition, the component unstructured program for interfacial dynamics (CUPID) was improved to analyze the condensation behavior of ternary gas mixtures. Thereafter, the condensation heat transfer on the primary side was calculated using the improved CUPID and CFD code, whereas that on the secondary side was simulated using MARS. Both the coupled codes were validated against the CONAN facility database. Finally, conjugate heat transfer simulations with wall condensation in the presence of non-condensable gases were appropriately performed.

Performance analysis of the passive safety features of iPOWER under Fukushima-like accident conditions

  • Kang, Sang Hee;Lee, Sang Won;Kang, Hyun Gook
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.676-682
    • /
    • 2019
  • After the Fukushima Daiichi accident, there has been an increasing preference for passive safety features in the nuclear power industry. Some passive safety systems require limited active components to trigger subsequent passive operation. Under very serious accident conditions, passive safety features could be rendered inoperable or damaged. This study evaluates (i) the performance and effectiveness of the passive safety features of iPOWER (innovative Power Reactor), and (ii) whether a severe accident condition could be reached if the passive safety systems are damaged, namely the case of heat exchanger tube rupture. Analysis results show that the reactor coolant system remains in the hot shutdown condition without operator actions or electricity for over 72 h when the passive auxiliary feedwater systems (PAFSs) are operable without damage. However, heat exchanger tube rupture in the PAFS leads to core damage after about 18 h. Such results demonstrate that, to enhance the safety of iPOWER, maintaining the integrity of the PAFS is critical, and therefore additional protections for PAFS are necessary. To improve the reliability of iPOWER, additional battery sets are necessary for the passive safety systems using limited active components for accident mitigation under such extreme circumstances.

Analysis of loss of cooling accident in VVER-1000/V446 spent fuel pool using RELAP5 and MELCOR codes

  • Seyed Khalil Mousavian;Amir Saeed Shirani;Francesco D'Auria
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.3102-3113
    • /
    • 2023
  • Following the Fukushima nuclear disaster, the simulation of accidents in the spent fuel pool has become more noticeable. Despite the low amount of decay heat power, the consequences of the accidents in a spent fuel pool (SFP) can be severe due to the high content of long-lived radionuclides and lack of protection by the pressure vessel. In this study, the loss-of-cooling accident (LOFA) for the VVER-1000/V446 spent fuel pool is simulated by employing RELAP5 and MELCOR 1.8.6 as the best estimate and severe accident analysis codes, respectively. For two cases with different total power levels, decay heat of spent fuels is calculated by ORIGEN-II code. For modeling SFP of a VVER-1000, a qualified nodalizations are considered in both codes. During LOFA in SFP, the key sequences such as heating up of the pool water, boiling and reducing the water level, uncovering the spent fuels, increasing the temperature of the spent fuels, starting oxidation process (generating Hydrogen and extra power), the onset of fuel melting, and finally releasing radionuclides are studied for both cases. The obtained results show a reasonable consistency between the RELAP5 and MELCOR codes, especially before starting the oxidation process.

차량 내 방치된 유아의 열손상 사망사고 방지를 위한 승객감지기술 및 최적 대응방안에 대한 연구 (A Study for the Technology to Prevent Heat Stroke Deaths with Occupant Detection System in Hot Cars)

  • 최은영;유민상
    • 자동차안전학회지
    • /
    • 제12권3호
    • /
    • pp.20-26
    • /
    • 2020
  • Many children have died (Heat stroke deaths) in the U.S. after being left alone in cars during hot weather, especially summer season. According to related report, more than 800 children have died of heat stroke from being trapped in a hot car since 1998. The regulation party, government has started to make not only technical regulation to prevent tragedy but also legislate to punish. However the 75% of accident has occurred unintended by their parents. So punishment is not the best solution for this case. So in this study, we analyze the trend of regulation and technology to save occupant who remained back seat. And finally we propose a countermeasure to prevent heat stroke deaths.

CNG압력용기의 열처리 조건별 파열 특성에 관한 실증적 연구 (An Empirical Study on the Bursting Properties According to Heat Treatment Condition of the CNG Pressure Vessel)

  • 김의수
    • 한국안전학회지
    • /
    • 제32권5호
    • /
    • pp.1-7
    • /
    • 2017
  • Forensic Engineering is the art and science of professionals qualified to serve as engineering experts in courts of law or in arbitration proceedings. Buses using compressed natural gas (CNG) trend to be extended in use internationally as optimal counterplan for reducing discharge gas of light oil due to high concern about environment. However, CNG buses is equipped with composite pressure vessels (CPVs); since the CPVs contain compressed natural gas, the risks in the case of accident is very high. In this study, the bursting test for the pressure vessel depending on the heat treatment conditions of the vessel in which the actual ruptured accident occurred, after the bursting test, the fracture pattern analysis had performed. The mechanical materials properties test using Instrumented Indentation Test had performed to confirm the mechanical properties for each heat treatment cases. Also, the fractography analysis and metallographic analysis had performed to find out the difference of each heat treatment case. By comparing normal vessel with abnormal vessel which have defect of heat treatment conditions in term of the bursting patterns and characteristics of containers using various forensic engineering methods, especially, it is possible to understand how important the heat treatment process is in the high pressure vessel unlike any product.

ENHANCEMENT OF DRYOUT HEAT FLUX IN A DEBRIS BED BY FORCED COOLANT FLOW FROM BELOW

  • Bang, Kwang-Hyun;Kim, Jong-Myung
    • Nuclear Engineering and Technology
    • /
    • 제42권3호
    • /
    • pp.297-304
    • /
    • 2010
  • In the design of advanced light water reactors (ALWRs) and in the safety assessment of currently operating nuclear power plants, it is necessary to evaluate the possibility of experiencing a degraded core accident and to develop innovative safety technologies in order to assure long-term debris cooling. The objective of this experimental study is to investigate the enhancement factors of dryout heat flux in debris beds by coolant injection from below. The experimental facility consists mainly of an induction heater, a double-wall quartz-tube test section containing a steel-particle bed and coolant injection and recovery condensing loop. A fairly uniform heating of the particle bed was achieved in the radial direction and the axial variation was within 20%. This paper reports the experimental data for 3.2 mm and 4.8 mm particle beds with a 300 mm bed height. The dryout heat density data were obtained for both the top-flooding and the forced coolant injection from below with an injection mass flux of up to $1.5\;kg/m^2s$. The dryout heat density increased as the rate of coolant injection increased. At a coolant injection mass flux of $1.0\;kg/m^2s$, the dryout heat density was ${\sim}6.5\;MW/m^3$ for the 4.8 mm particle bed and ${\sim}5.6\;MW/m^3$ for the 3.2 mm particle bed. The enhancement factors of the dryout heat density were 1.6-1.8.

FUEL BEHAVIOR UNDER LOSS-OF-COOLANT ACCIDENT SITUATIONS

  • CHUNG HEE M.
    • Nuclear Engineering and Technology
    • /
    • 제37권4호
    • /
    • pp.327-362
    • /
    • 2005
  • The design, construction, and operation of a light water reactor (LWR) are subject to compliance with safety criteria specified for accident situations, such as loss-of-coolant accident (LOCA) and reactivity-initiated accident (RIA). Because reactor fuel is the primary source of radioactivity and heat generation, such a criterion is established on the basis of the characteristics and performance of fuel under the specific accident condition. As such, fuel behavior under accident situations impact many aspects of fuel design and power generation, and in an indirect manner, even spent fuel storage and management. This paper provides a comprehensive review of: the history of the current LOCA criteria, results of LOCA-related investigations on conventional and new classes of fuel, and status of on-going studies on high-burnup fuel under LOCA situations. The objective of the paper is to provide a better understanding of important issues and an insight helpful to establish new LOCA criteria for modem LWR fuels.

OPR1000형 원전의 최종열제거원 상실사고 대처전략 및 운전원 조치 시간에 따른 열수력 거동 분석 (Thermal-hydraulic Analysis of Operator Action Time on Coping Strategy of LUHS Event for OPR1000)

  • 송준규
    • 한국안전학회지
    • /
    • 제35권5호
    • /
    • pp.121-127
    • /
    • 2020
  • Since the Fukushima nuclear accident in 2011, the public were concerned about the safety of Nuclear Power Plants (NPPs) in extreme natural disaster situations, such as earthquakes, flooding, heavy rain and tsunami, have been increasing around the world. Accordingly, the Stress Test was conducted in Europe, Japan, Russia, and other countries by reassessing the safety and response capabilities of NPPs in extreme natural disaster situations that exceed the design basis. The extreme natural disaster can put the NPPs in beyond-design-basis conditions such as the loss of the power system and the ultimate heat sink. The behaviors and capabilities of NPPs with losing their essential safety functions should be measured to find and supplement weak areas in hardware, procedures and coping strategies. The Loss of Ultimate Heat Sink (LUHS) accident assumes impairment of the essential service water system accompanying the failure of the component cooling water system. In such conditions, residual heat removal and cooling of safety-relevant components are not possible for a long period of time. It is therefore very important to establish coping strategies considering all available equipment to mitigate the consequence of the LUHS accident and keep the NPPs safe. In this study, thermal hydraulic behavior of the LUHS event was analyzed using RELAP5/Mod3.3 code. We also performed the sensitivity analysis to identify the effects of the operator recovery actions and operation strategy for charging pumps on the results of the LUHS accident.

Preliminary design and assessment of a heat pipe residual heat removal system for the reactor driven subcritical facility

  • Zhang, Wenwen;Sun, Kaichao;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3879-3891
    • /
    • 2021
  • A heat pipe residual heat removal system is proposed to be incorporated into the reactor driven subcritical (RDS) facility, which has been proposed by MIT Nuclear Reactor Laboratory for testing and demonstrating the Fluoride-salt-cooled High-temperature Reactor (FHR). It aims to reduce the risk of the system operation after the shutdown of the facility. One of the main components of the system is an air-cooled heat pipe heat exchanger. The alkali-metal high-temperature heat pipe was designed to meet the operation temperature and residual heat removal requirement of the facility. The heat pipe model developed in the previous work was adopted to simulate the designed heat pipe and assess the heat transport capability. 3D numerical simulation of the subcritical facility active zone was performed by the commercial CFD software STAR CCM + to investigate the operation characteristics of this proposed system. The thermal resistance network of the heat pipe was built and incorporated into the CFD model. The nominal condition, partial loss of air flow accident and partial heat pipe failure accident were simulated and analyzed. The results show that the residual heat removal system can provide sufficient cooling of the subcritical facility with a remarkable safety margin. The heat pipe can work under the recommended operation temperature range and the heat flux is below all thermal limits. The facility peak temperature is also lower than the safety limits.

SAFETY STUDIES ON HYDROGEN PRODUCTION SYSTEM WITH A HIGH TEMPERATURE GAS-COOLED REACTOR

  • TAKEDA TETSUAKI
    • Nuclear Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.537-556
    • /
    • 2005
  • A primary-pipe rupture accident is one of the design-basis accidents of a High-Temperature Gas-cooled Reactor (HTGR). When the primary-pipe rupture accident occurs, air is expected to enter the reactor core from the breach and oxidize in-core graphite structures. This paper describes an experiment and analysis of the air ingress phenomena and the method fur the prevention of air ingress into the reactor during the primary-pipe rupture accident. The numerical results are in good agreement with the experimental ones regarding the density of the gas mixture, the concentration of each gas species produced by the graphite oxidation reaction and the onset time of the natural circulation of air. A hydrogen production system connected to the High-Temperature Engineering Test Reactor (HTTR) Is being designed to be able to produce hydrogen by themo-chemical iodine-Sulfur process, using a nuclear heat of 10 MW supplied by the HTTR. The HTTR hydrogen production system is first connected to a nuclear reactor in the world; hence a permeation test of hydrogen isotopes through heat exchanger is carried out to obtain detailed data for safety review and development of analytical codes. This paper also describes an overview of the hydrogen permeation test and permeability of hydrogen and deuterium of Hastelloy XR.