• Title/Summary/Keyword: Heat Treatment Solution

Search Result 836, Processing Time 0.033 seconds

Biostatic activity of Coix lacryma seed extract on Toxoplasma gondii in macrophages (율무씨 수침 추출물이 대식세포내 톡소포자충에 미치는 영향에 관한 실험적 연구)

  • 소진탁;김숙향
    • Parasites, Hosts and Diseases
    • /
    • v.34 no.3
    • /
    • pp.197-206
    • /
    • 1996
  • Water extract of Coix locrvmn seeds (Co-Ex) was separated into several components; dissolved with Tris-Cl buffer and the supernatant (WC 1), ammonium sulfate treatment supernatant (WC2) and the pellet nvc31,9AE column chromatography of WC 1 and the peak portions; WC4, WCS and WC6. Murine peritoneal macrophages in DMEM containing 10% heat-inactivated FCS were infected with tachyzoites of ToxopIQsmc gondii, RH strain, in uifo. By adding modulators such as Co-Ex, WC 1,2,3,4.5,6 and LPS or IFN-γ for 24 hrs . toxoplasmastatic activity of macrophages was examined in relation to nitrite production. Nitrite production of macrophages was enhanced especially in the series of WC2, WC1 and the combination sample (WC1 + WC2 + WC3) by order than other components or fractions (WC4, WC5, WC6) tested . Toxoplasmastatic actions such as percentage of the inacrophages infected by T. gonnii and fold increase of T gondii in macrophages showed retroverse relations with the amount of nitrite production; i.e. as nitric oxide (NO) increased the phagocytic index of macrophages and the fold increase of tachyzoites in macrophages decreased . Nitrite (NO-2) production was increased by adding IFN-γ in all cases together with enhancement of biostatic effects. Through the results obtained, it is speculated that some components other than the non-proteinous and defatted components in Coix lacrwmn seeds may contribute to activate macrophages through induction of NO for the biostatic activity.

  • PDF

Effects of anatase-rutile phase transition and grain growth with WO3 on thermal stability for TiO2 SCR catalyst (WO3 첨가에 의한 TiO2계 SCR 촉매의 상전이 및 입자성장이 고온안정성에 미치는 영향)

  • Yoon, Sang-Hyeon;Kim, Jang-Hoon;Shin, Byeong-Kil;Park, Sam-Sik;Shin, Dong-Woo;Lee, Hee-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.4
    • /
    • pp.181-186
    • /
    • 2011
  • Thermal stability of the $TiO_2$ SCR catalyst with W03 loading was investigated in terms of structural and morphological analyses. The $TiO_2$ catalysts with 10 w% $WO_3$ content and without $WO_3$ were prepared. which were heat-treated at $800^{\circ}C$ for 5 h. It was found that the catalytic acidity was decreased by thermal degradation in the $WO_3-TiO_2$ specimen that relatively less than the $TiO_2$ specimen from FT-IR analysis. The phase transition of the $TiO_2$ catalyst from anatase to rutile was increased by heal-treatment, and the percentage of the rutile phase was 28.4 % in the $WO_3-TiO_2$ and 22.9 % in the $TiO_2$. A shell region of $WO_3$ distinguished from a $TiO_2$ particle was also observed in the grain boundary region, and the $WO_3$ led to the suppression of grain growth. It could be confirmed that the suppression of grain growth can contribute to the improvement of catalytic properties for thermal stability more than the increase of anatase-rutile phase transformation which cause the reduction of the catalytic activity in the $TiO_2$ SCR catalyst by the presence of $WO_3$.

Physicochemical Properties of Barley β-Glucan with Different Heating Temperatures (열처리 온도에 따른 보리 β-Glucan의 이화학적 특성)

  • Lee, Sang Hoon;Jang, Gwi Yeong;Kim, Hyun Young;Woo, Koan Sik;Hwang, In Guk;Kim, Kee Jong;Lee, Mi Ja;Kim, Tae Jip;Lee, Junsoo;Jeong, Heon Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1764-1770
    • /
    • 2012
  • This study was performed to investigate the changes of total and soluble ${\beta}$-glucan contents, purity, and physical characteristics of three heated barley varieties: Saessalbori (SSB), Saechalssalbori (SCSB), and Hinchalssalbori (HCSB). The barleys were heated at different temperatures of 110, 120, 130, 140 and $150^{\circ}C$ for 2 hours. The total ${\beta}$-glucan contents of raw SSB, SCSB, and HCSB were 8.40, 7.77 and 8.28%, and the soluble ${\beta}$-glucan contents were 4.79, 4.14, and 4.61%, respectively. After heating at $130^{\circ}C$, the total ${\beta}$-glucan contents increased to 11.59, 14.6, and 13.36%, as did the soluble ${\beta}$-glucan contents to 4.21, 7.96, and 7.23%, respectively. The purities of soluble ${\beta}$-glucan of the raw barleys were 35.11, 32.74 and 25.62%, but after heating at $150^{\circ}C$, it increased to 83.43, 91.02, and 88.01%, respectively. The molecular weight and viscosity of the ${\beta}$-glucan solution decreased with increasing heating temperature. The re-solubility of raw barley ${\beta}$-glucan was about 50%, but it was increased to 97% with increasing heating temperature. These results suggest that heating of ${\beta}$-glucan can improve the utilization of barley ${\beta}$-glucan.

A Study on the Engineering Property and Durability of Recycled Concrete with Replacement Ratio of Recycled Fine Aggregate and Fly-ash (재생잔골재 및 플라이애시 대체율에 따른 재생콘크리트의 공학적 특성 및 내구성능에 관한 연구)

  • Kim, Moo-Han;Kim, Gyu-Yong;Kim, Jae-Whan;Cho, Bong-Suk;Kim, Young-Sun;Moon, Hyung-Jae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.89-97
    • /
    • 2005
  • Recently, for the problem solution of demand and supply imbalance of fine aggregate due to the shortage of natural fine aggregate resource and the environment regulation on sea sand extraction in the construction field, the studies for the application of recycled fine aggregate using waste concrete are being progressed versatilely. On the other hand, the treatment of fly-ashes that of industrial by-product originated in the steam power plant is discussed by the continuous increasing of origination quantities. In the ease of using fly-ash, advantages are the improvement of workability, viscosity and long-time strength, and the reduction of hydration heat under the early ages, as the admixtures for concrete, but the studies for the application of fly-ash as recycled concrete admixtures are inadequacy. There fore, in this study, through investigating the properties of fresh, hardened and durability according to the replacement of recycled fine aggregate and fly-ash, it is intended to propose the fundamental data for structural application of recycled concrete using recycled fine aggregate and fly-ash. As the result of this study, they arc shown that the engineering properties and durability, in the case of replacement ratio 100% of recycled fine aggregate, arc similar to those of concrete using natural fine aggregate, so it is considered that recycled fine aggregate could be used as the fine aggregate for concrete. Also, the performances of recycled concrete are improved by replacing fly-ash.

  • PDF

Antibacterial Activities of Trace Elements in Combination with Food Additives (미량원소 강화 식품소재의 항균효과)

  • Kim, Bo-Mi;Mok, Jong-Soo;Oh, Eun-Gyoung;Son, Kwang-Tae;Shim, Kil-Bo;Cho, Young-Je
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • Antibacterial activities of the trace elements in combination with the food additives were measured against 6 kinds of food-borne microorganisms such as Escherichia coli, Vibrio parahaemolyticus, Staphylococcus aureus, Bacillus cereus, Bacillus subtilis and Pseudomonas fluorescens. The difference of antibacterial activity was not shown among the kinds of food additives, such as dextrin, gelatin and collagen. Zn and Ge in combination with food additives had strong antibacterial effect. Especially, $1\%$ zinc acetate in combination with $1\%$ gelatin was more effective against P. fluorescens and S. aureus than against Bacillus sp., E. coli and V. parahaemolyticus. Minimum inhibitory concentration of zinc acetate in combination with $1\%$ gelatin appeared to be 0.5 mg/mL on S. aureus and P. fluorescens, and 1.0 mg/mL on E. coli, V. parahaemolyticus, B. cereus and B. subtilis. Minimum bactericidal concentration of zinc acetate in combination with $1\%$ gelatin appeared to be 0.5 mg/mL on P. fluorescens and 1.0 mg/mL on E. coli, V. parahaemolyticus, S. aureus, B. cereus and B. subtilis. The zinc acetate in combination with gelatin showed stronger inhibitory effect in acidic range below pH 6.0, and remained active even after heat treatment at $121^{\circ}C$ for 15 min. In comparison with control, the viable cell counts of fish pastes, which were coated with the solution containing both $1\%$ zinc acetate and $3\%$ gelatin, were decreased by more than 100-fold until the storage of 7 days at $10^{\circ}C$. The results indicate that the combined use of zinc acetate and some food additives could prolong the shelf life of fish pastes by 8 days or more at $10^{\circ}C$.

A study on the change effect of emission regulation mode on vehicle emission gas (배기가스 규제 모드 변화가 차량 배기가스에 미치는 영향 연구)

  • Lee, Min-Ho;Kim, Ki-Ho;Lee, Joung-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1108-1119
    • /
    • 2018
  • As the interest on the air pollution is gradually rising at home and abroad, automotive and fuel researchers have been studied on the exhaust and greenhouse gas emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward two main issues : exhaust emissions (regulated and non-regulated emissions, PM particle matter) and greenhouse gases of vehicle. Exhaust emissions and greenhouse gases of automotive had many problem such as the cause of ambient pollution, health effects. In order to reduce these emissions, many countries are regulating new exhaust gas test modes. Worldwide harmonized light-duty vehicle test procedure (WLTP) for emission certification has been developed in WP.29 forum in UNECE since 2007. This test procedure was applied to domestic light duty diesel vehicles at the same time as Europe. The air pollutant emissions from light-duty vehicles are regulated by the weight per distance, which the driving cycles can affect the results. Exhaust emissions of vehicle varies substantially based on climate conditions, and driving habits. Extreme outside temperatures tend to increasing the emissions, because more fuel must be used to heat or cool the cabin. Also, high driving speeds increases the emissions because of the energy required to overcome increased drag. Compared with gradual vehicle acceleration, rapid vehicle acceleration increases the emissions. Additional devices (air-conditioner and heater) and road inclines also increases the emissions. In this study, three light-duty vehicles were tested with WLTP, NEDC, and FTP-75, which are used to regulate the emissions of light-duty vehicles, and how much emissions can be affected by different driving cycles. The emissions gas have not shown statistically meaningful difference. The maximum emission gas have been found in low speed phase of WLTP which is mainly caused by cooled engine conditions. The amount of emission gas in cooled engine condition is much different as test vehicles. It means different technical solution requires in this aspect to cope with WLTP driving cycle.