• 제목/요약/키워드: Heat Transport Limit

검색결과 15건 처리시간 0.021초

가역 루프 히트파이프의 작동특성에 관한 실험적 연구 (An Experimental Investigation on the Operating Characteristics of a Reversible Loop Heat Pipe)

  • 김봉훈;최준민
    • 설비공학논문집
    • /
    • 제18권3호
    • /
    • pp.231-239
    • /
    • 2006
  • An experimental investigation of a Reversible Loop Heat Pipe (RLHP) was conducted to determine the operating limits and performance characteristics as functions of the thermophysical parameters, the heat input, and the cooling intensity. Variations in both temperature and heat transport capacity were measured and analyzed in order to accurately evaluate the transient operating characteristics. In addition, the maximum heat transport as a function of the mean evaporator temperature, the ratio of heat transport to heater input power as a function of the mean evaporator temperature, and the overall thermal resistance as a function of the overall heat transport capacity were examined as well. Results indicated that the cooling intensity played an important role on the operating characteristics and performance limitation. The maximum heat transports corresponding to cooling intensity $72W/^{\circ}C$ and $290W/^{\circ}C$ were 446 W and 924 W, respectively. Also, observation of the startup characteristics indicated that the mean evaporator temperature should be maintained between $40^{\circ}C$ and $60^{\circ}C$, and overall thermal resistance were measured as $0.02^{\circ}C/W$.

지상용 소형 루프히트파이프 성능에 관한 연구 (Thermal Performance of a Small-scale Loop Heat Pipe for Terrestrial Application)

  • 정원복;부준홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1052-1057
    • /
    • 2004
  • A small-scale loop heat pipe with polypropylene wick was fabricated and tested for its thermal performance. The container and tubing of the system was made of stainless steel and several working fluids were used to see the difference in performance including methanol, ethanol, acetone, R134a, and water. The heating area was 35 mm ${\times}$ 35 mm and there were nine axial grooves in the evaporator to provide a vapor passage. The pore size of the polypropylene wick inside the evaporator was varied from 0.5 m to 25 m. The size of condenser was 40 mm (W) ${\times}$ 50 mm (L) in which ten coolant paths were provided. The inner diameter of liquid and vapor transport lines were 2.0 mm and 4.0 mm, respectively and the length of which were 0.5 m. The PP wick LHP was operated with methanol, acetone, and ethanol normally. R134a was not compatible with PP wick and water was unsuitable within operating limit of $100^{\circ}C$. The minimum thermal load of 10 W (0.8 W/cm2) and maximum thermal load of 80 W (6.5 W/cm2) were achieved using methanol as working fluid with the condenser temperature of $20^{\circ}C$ with horizontal position.

  • PDF

Improvement of aseismic performance of a PGSFR PHTS pump

  • Lee, Seong Hyeon;Lee, Jae Han;Kim, Sung Kyun;Kim, Jong Bum;Kim, Tae Wan
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1847-1861
    • /
    • 2020
  • A design study was performed to improve the limit aseismic performance (LSP) of a primary heat transport system (PHTS) pump. This pump is part of the primary equipment of a prototype generation IV sodium-cooled fast reactor (PGSFR). The LSP is the maximum allowable seismic load that still ensures structural integrity. To calculate the LSP of the PHTS pump, a structural analysis model of the pump was developed and its dynamic characteristics were obtained by modal analysis. The floor response spectrum (FRS) initiated from a safety shutdown earthquake (SSE), 0.3 g, was applied to the support points of the PHTS pump, and then the seismic induced stresses were calculated. The structural integrity was evaluated according to the ASME code, and the LSP of the PHTS pump was calculated from the evaluation results. Based on the results of the modal analysis and LSP of the PHTS pump, design parameters affecting the LSP were selected. Then, ways to improve the LSP were proposed from sensitivity analysis of the selected design variables.

Iron hydrolysis and lithium uptake on mixed-bed ion exchange resin at alkaline pH

  • Olga Y. Palazhchenko;Jane P. Ferguson;William G. Cook
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3665-3676
    • /
    • 2023
  • The use of ion exchange resins to remove ionic impurities from solution is prevalent in industrial process systems, including in the primary heat transport system (PHTS) purification circuit of nuclear power plants. Despite its extensive use in the nuclear industry, our general understanding of ion exchange cannot fully explain the complex chemistry in ion exchange beds, particularly when operated at or near their saturation limit. This work investigates the behaviour of mixed-bed ion exchange resin, saturated with species representative of corrosion products in a CANDU (Canadian Deuterium Uranium) reactor PHTS, particularly with respect to iron chemistry in the resin bed and the removal of lithium ions from solution. Experiments were performed under deaerated conditions, analogous to normal PHTS operation. The results show interesting iron chemistry, suggesting the hydrolysis of cation resin bound ferrous species and the subsequent formation of either a solid hydrolysis product or the soluble, anionic Fe(OH)3-.

벤젠의 위험성 평가를 위한 연소 특성치 고찰 (Investigation of Combustible Characteristics for Risk Assessment of Benzene)

  • 하동명
    • 한국안전학회지
    • /
    • 제24권5호
    • /
    • pp.28-33
    • /
    • 2009
  • The thermochemical parameters for safe handling, storage, transport, operation and process design of flammable substances are explosion limit, flash point, autoignition temperatures(AITs), minimum oxygen concentration(MOC), heat of combustion etc.. Also it is necessary to know explosion limit at high temperature and pressure. For the safe handling of benzene, lower explosion limit(LEL) at $25^{\circ}C$, the temperature dependence of the explosion limits and flash point were investigated. And the AITs for benzene were experimented. By using the literatures data, the lower and upper explosion limits of benzene recommended 1.3 vol% and 8.0 vol%, respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for benzene, and the experimental AIT of benzene was $583^{\circ}C$. The new equations for predicting the temperature dependence of the explosion limits of benzene is proposed. The values calculated by the proposed equations were a good agreement with the literature data.

Experimental Study on the Thermal Performance of a Small-scale Loop Heat Pipe with Polypropylene Wick

  • Boo Joon Hong;Chung Won Bok
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.1052-1061
    • /
    • 2005
  • A small-scale loop heat pipe (LHP) with polypropylene wick was fabricated and tested for investigation of its thermal performance. The container and tubing of the system were made of stainless steel and several working fluids were tested including methanol, ethanol, and acetone. The heating area was $35\;mm\;{\times}\;35\;mm$ and nine axial grooves were provided in the evaporator to provide vapor passages. The pore size of the polypropylene wick inside the evaporator was varied from $0.5\; {\mu}m\;to\;25\;{\mu}m.$ The inner diameter of liquid and vapor transport lines were 2.0 mm and 4.0 mm, respectively and the length of which were 0.5 m. The size of condenser was $40\;mm\;(W)\;{\times}\;50\;mm\;(L)$ in which ten coolant paths were provided. Start-up characteristics as well as steady-state performance was analyzed and discussed. The minimum thermal load of $10\;W\;(0.8\;W\;/cm^{2})$ and maximum thermal load of $80\;W\;(6.5\;W\;/cm^{2})$ were achieved using methanol as working fluid with the condenser temperature of $20^{\circ}C$ with horizontal position.

NANOTECHNOLOGY FOR ADVANCED NUCLEAR THERMAL-HYDRAULICS AND SAFETY: BOILING AND CONDENSATION

  • Bang, In-Cheol;Jeong, Ji-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제43권3호
    • /
    • pp.217-242
    • /
    • 2011
  • A variety of Generation III/III+ water-cooled reactor designs featuring enhanced safety and improved economics are being proposed by nuclear power industries around the world in efforts to solve the future energy supply shortfall. Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. Phase change by boiling and condensation in the reverse process is a highly efficient heat transport mechanism that accommodates large heat fluxes with relatively small driving temperature differences. This mode of heat transfer is encountered in a wide spectrum of nuclear systems,and thus it is necessary to determine the thermal limit of water-cooled nuclear energy conversion in terms of economic and safety. Such applications are being advanced with the introduction of new technologies such as nanotechnology. Here, we investigated newly-introduced nanotechnologies relevant to boiling and condensation in general engineering applications. We also evaluated the potential linkage between such new advancements and nuclear applications in terms of advanced nuclear thermal-hydraulics.

Manufacturing and Temperature Measurements of a Sodium Heat Pipe

  • 이병인;이성홍
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1533-1540
    • /
    • 2001
  • A high-temperature sodium stainless steel heat pipe was fabricated and its performance has been investigated. The working fluid was sodium and it was sealed inside a straight tube container made of stainless steel. The amount of sodium occupied approximately 20% of the total volume of the heat pipe and its weight was 65.7gram. The length of a stainless steel container is 1002mm and its outside diameter is 25.4mm. Performance tests were carried out in a room air condition under a free convective environment and the measured temperatures are presented. The start-up behavior of the heat pipe from a frozen state was investigated for various heat input values between 600W and 1205W. In steady state, axial temperature distributions of a heat pipe were measured and its heat transfer rates were estimated in the range of vapor temperature from 50$0^{\circ}C$ to 63$0^{\circ}C$. It is found that there are small temperature differences in the vapor core along the axial direction of a sodium heat pipe for the high operating temperatures. But for the range of low operating temperatures there are large temperature drops along the vapor core region of a sodium heat pipe, because a small vapor pressure drop makes a large temperature drop. The transition temperature was reached more rapidly in the cases of high heat input rate for the sodium heat pipe.

  • PDF

물-에탄올 혼합물을 작동유체로 하는 진공관형 태양열 집열기용 히트파이프의 작동특성 (Performance Characteristics of a Heat Pipe Having Water-Ethanol Mixture as Working Fluid for Evacuated Solar Collectors)

  • 정의국;부준홍;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제28권5호
    • /
    • pp.78-84
    • /
    • 2008
  • Heat pipes are considered to be promising candidates to enhance the heat transport capability of evacuated solar collectors in a wide temperature range. The working fluid must be selected properly considering various operating conditions of heat pipes for medium-high temperature range to avoid dry-out, local overheating, and frozen failure. The advantage of using binary mixture as heat pipe working fluid is that it can extend operating temperature range of the system as it can overcome operating temperature limit of a single fluid. Various operating temperature ranges were imposed in the experiments to simulate the actual operation of solar collectors using water-ethanol binary mixture. Tests were conducted for the coolant temperature range of -10$^{\circ}C$ to 120$^{\circ}C$, and mixing ratio range was from 0 to 1 based on mass fraction.

CANDU-9 480/ SEU 원자로의 과도변화해석 (Transient Analysis of the CANDU-9 480/SEU Reactor)

  • J. C. Shin;Park, J. H.;K. N. Han;H. C. Suk
    • Nuclear Engineering and Technology
    • /
    • 제27권5호
    • /
    • pp.687-700
    • /
    • 1995
  • 제안된 CANDU-9 원자로의 열수력 과도변화상태가 해석되었으며 주요한 몇개의 과도변화가 열수송 계통의 설계요건을 만족시키는지에 대해 평가되었다. 열수송계통의 과도변화시 핵연료의 건전성과 계통압력상승의 제한 측면에서 분석된 본 해석결과에 따라서 제안된 열수송계통형상과 열수송계통기기의 예비 크기가 확정 및 검증되었다. AECB R-77 요구조건에 대한 CANDU-9 원자로의 만족여부를 평가하였다. 해석결과, 각 과도변화시 원자로 모관의 고압첨두치가 ASME코드의 요구조건에 따른 허용범주내에 있었으며 핵연료의 건전성이 확인되었다. 원자로 가동운전시 제안된 CANDU-9 원자로의 고유적인 핵연료채널을 통한 역류현상을 규명하기 위하여 한개의 펌프가 시동될때의 과도변화현상을 해석하였다.

  • PDF