• Title/Summary/Keyword: Heat Transfer analysis

Search Result 2,749, Processing Time 0.027 seconds

Heat Transfer Analysis of Bearing Unit in Submersible Motor Pump (수중 모터펌프 베어링 유닛 열전달 해석)

  • Yun, Jeong-Eui;Byun, Hyung-Kyun
    • Tribology and Lubricants
    • /
    • v.27 no.4
    • /
    • pp.198-203
    • /
    • 2011
  • The purpose of this paper is to find a proper cooling system of bearing unit in the submersible motor pump to extend a life time. To do this, heat transfer analysis of the submersible motor pump were performed using commercial CFD code ANSYS. In order to obtain the resonable heat transfer simulation results, we first set up mathematical model of heat source in the bearing system, and carried out heat transfer analysis with the model. As a results, new type bearing cap which had several ribs for cooling the bearing was proposed. Finally, through the comparison between experimental results of old and new model pump, we proofed that maximum bearing temperature of new model was about 10% lower than that of old model.

Analysis of flow and heat transfer in internally finned tube (내부 핀이 부착된 열교환기의 유동장해석)

  • Jeong Ho-Eyoul;Jeong Jae-Tack;Ko Hyung-Jong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.139-144
    • /
    • 1999
  • There have been many studies for heat transfer enhancement. Particularly, the study of flow in heat exchangers which have fin device has been main theme in heat transfer area. Practically, the circular tube which has internal fins is widely used for developing heat transfer rate. In this study, flow and heat transfer analysis of the circular tube with fins are investigated. The height and the number of fins are arbitrary. The flow field is assumed to be laminar. The conformal mapping is used for analytic solution of the laminar flow field. Discretization of governing equation, namely, FDM was used for numerical analysis. The velocity field, flow rate and shear stress are calculated for some numbers of fins in circular tube and for some heights of fin. Temperature fields are plotted along the tube length. It can be shown that the numerical solution agrees with the analytical solution.

  • PDF

Heat Transfer Analysis of Bakery Machine (제과제빵기계의 열전달 해석)

  • Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4405-4410
    • /
    • 2012
  • This research aims to do heat transfer analysis on multi-functional dough conditioner. The dough conditioner is a key bakery machine for the maturation of dough which is raw material of bakery and also it's amount of used has been increased. Solidworks which is one of automatic design programs is applied to design in order to manufacture the multi-functional dough conditioner, and ANSYS which is a three dimensional finite element analysis code is used for the heat transfer analysis. Inside temperatures and heat fluxes are obtained as the results of heat transfer analysis and the results are contributed significantly in manufacturing the multi-functional dough conditioner.

Numerical Analysis on Heat Transfer Characteristics and Pressure Drop in Plate Heat Exchanger (판형열교환기의 열전달특성 및 압력강하에 관한 해석적 연구)

  • Kim, K.R.;Kim, I.G.;Yim, C.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.2
    • /
    • pp.19-26
    • /
    • 2002
  • This study aims at numerically analyzing on heat transfer the characteristics and pressure drop of plate heat exchanger(PHE) using the Phoenics 3.1 VR Editor for the standard k-$\varepsilon$ model. Computations have been carried out for a range of chevron angle from $30^{\circ}$ to $60^{\circ}$, inlet velocity from 0.03m/s to 0.63m/s and the height of corrugation from 0.0045m to 0.0060m. The results show that both of heat transfer performance and pressure drop increase as chevron angle increases. This is because higher troughs produce higher turbulence and a higher heat transfer coefficient in the liquids flowing between the plates. As inlet velocity from 0.03m/s to 0.63m/s increases, heat transfer performance and pressure drop increase parabolically. As the height of corrugation increases, both of heat transfer performance and pressure drop decrease with the decrease of velocity. And the pressure drop decreases and the friction factor increases as the height of corrugation increases.

Research on prediction and analysis of supercritical water heat transfer coefficient based on support vector machine

  • Ma Dongliang;Li Yi;Zhou Tao;Huang Yanping
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4102-4111
    • /
    • 2023
  • In order to better perform thermal hydraulic calculation and analysis of supercritical water reactor, based on the experimental data of supercritical water, the model training and predictive analysis of the heat transfer coefficient of supercritical water were carried out by using the support vector machine (SVM) algorithm. The changes in the prediction accuracy of the supercritical water heat transfer coefficient are analyzed by the changes of the regularization penalty parameter C, the slack variable epsilon and the Gaussian kernel function parameter gamma. The predicted value of the SVM model obtained after parameter optimization and the actual experimental test data are analyzed for data verification. The research results show that: the normalization of the data has a great influence on the prediction results. The slack variable has a relatively small influence on the accuracy change range of the predicted heat transfer coefficient. The change of gamma has the greatest impact on the accuracy of the heat transfer coefficient. Compared with the calculation results of traditional empirical formula methods, the trained algorithm model using SVM has smaller average error and standard deviations. Using the SVM trained algorithm model, the heat transfer coefficient of supercritical water can be effectively predicted and analyzed.

Thermal Stress Analysis for the Printed Circuit Board of Electronic Packages (전자장비 회로기판의 열응력해석)

  • Kwon Y. J.;Kim J. A.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.4
    • /
    • pp.416-424
    • /
    • 2004
  • In this paper, the heat transfer analysis and thermal stress analysis of the PCB(Printed Circuit Board) equipped in electronic Packages are carried out for various may types of chips on the PCB. And two structural PCB models are used in the analyses. The electronic chips on the PCB usually emit heat and this heat generates the thermal stress around the chip. The thermal load due to the heat generation of chips on the PCB may cause the malfunction of the electronic packages such as a monitor. a computer etc. Hence, the PCB should be designed to withstand these thermal loads. In this paper, the heat transfer analysis and thermal stress analysis are executed for the PCB model with pins and the analysis results are compared with the results for the PCB model without pins. The analysis results show that the PCB model without pins is not good for the thermal stress analysis of PCB, even though these two models have similar heat transfer characteristics. The analysis results also show that the highest thermal stress occurs in the pin especially attached to the highest temperature chip, and the PCB constrained to the electronic package on the long side is structurally more stable than other cases. The analyses of the PCB are executed using the finite element analysis code, NISA.

A Study on Derivation of Contact Heat Transfer Coefficient Between Die and Aluminum Billet in High Temperature Compression Process (고온 압축 공정에서 금형과 알루미늄 빌렛의 접촉 열전달 계수 도출에 관한 연구)

  • Jeon, H.W.;Suh, C.H.;Oh, S.G.;Kwon, T.H.;Kang, G.P.;Yook, H.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.142-148
    • /
    • 2021
  • In hot forging analysis, the interfacial heat transfer coefficient (IHTC) is a very important factor defining the heat flow between the die and the material. In particular, in the hot forging analysis of aluminum 6xxx series alloy, which are used in automobile parts, differences in load and microstructure occur due to changes in surface temperature according to the IHTC. This IHTC is not a constant value but changes depends on pressure. This study derived the IHTC under low load using aluminum 6082 alloy. An experiment was performed by fabricating a compression die, and a heat transfer analysis was performed based on the experimental data. The heat transfer analysis used DEFORM-2D, a commercial finite element analysis program. To derive the IHTC, heat transfer analysis was performed for the IHTC in the range of 10 to 50 kW/m2℃ at intervals of 10kW/m2℃. The heat transfer analysis results according to the IHTC and the actual experimental values were compared to derive the IHTC of the aluminum 6082 alloy under low load.

The Relation of Enhancement Heat Transfer to Acoustic Pressure by Acoustic Streaming (음향흐름에 의한 음압과 열전달 촉진과의 관계)

  • Yang, Ho-Dong;Oh, Yool-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.591-596
    • /
    • 2005
  • The objectives in the present study are to investigate that the enhancement heat transfer was experimentally measured and was compared with the acoustic pressure obtained by numerical analysis. From the results of the present study, a strong Fluid motion initiated by ultrasonic vibrations can affect heat and mass transfer. This phenomenon. called acoustic streaming, clearly observed by PIV measurement leads to increase in velocity of a Fluid which is a crucial physical concept to explain the enhancement heat transfer. The heat transfer coefficient is increased with increase in the ultrasonic intensities. The largest enhancement heat transfer (about 26%) is measured at the ultrasonic intensity of 300W. Acoustic streaming results from sudden acoustic pressure variations in the liquid. The results of numerical analysis reveal that acoustic pressure is increased by 59.5% at the ultrasonic intensity of 300W. The higher acoustic pressure near four ultrasonic transducers develops more intensive flow destroying the flow instability. Also, the profiles of acoustic pressure variation are consistent with those of enhancement heat transfer.

  • PDF

A study on the Analysis of Combustion Gas and its Flow Induced by Fire in an Enclosure (밀폐공간내 화재에 의해 생성된 연소가스 분석 및 유동에 관한 연구)

  • 추병길;조성곤
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.77-93
    • /
    • 1997
  • The natural convection and combined heat transfer induced by fire in a rectangular enclosure is numerically studied. The model for this numerical analysis is partially opened, it is divided by a vertical baffle projecting from ceiling. The solution procedure Includes the standard k- $\varepsilon$ model for turbulent flow and the discrete ordinates method (DOM ) is used for the calculation of radiative heat transfer equation. In this study, numerical simulation on the combined naturnal convection and radiation is carried out in a partial enclosure filled with absorbed-emitted gray media, but is not considered scattering problem. The velocity vectors, streamlines, and isothermal lines are compared the results of pure convection with those of the combined convection-radiation, the combined heat transfer. Comparing the results of pure convection with those of the combined convection-radiation, the combined heat transfer analysis shows the stronger circulation than those of the pure convection. Three different locations of heat source are considered to observe the effect of heat source location on the heat transfer phenomena. As the results, the circulation and the heat transfer In the left region from heating block are much more influenced than those in the right region. It is also founded that the radiation effect cannot be neglected in analyzing the building in fire.

  • PDF

A study on the temperature distribution characteristics in the tube modules of a heat recovery steam generator ith the change of heat transfer modeling (배열회수 보일러 전열관군에서 열전달 모델링에 따른 온도 분포 특성 연구)

  • Ha, Ji Soo
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.103-109
    • /
    • 2015
  • A heat recovery steam generator consists of inlet expansion duct and heat transfer tube bank modules. For the enhancement of heat transfer in the tube bank modules, the flow should be uniform before the 1st heat transfer tube bank module. The present study has been carried out to analyze the flow characteristics in the inlet expansion duct of a heat recovery steam generator by using numerical flow analysis. The aim of the present study is to establish the proper heat transfer mechanism in the heat transfer tube bank modules by the comparison of the heat transfer models, the case with the constant heat loss per unit volume and the case with heat loss by using inner and outer convective heat transfer coefficient of heat transfer tube. From the present research, it could be seen that the heat transfer mechanism with using inner and outer convective heat transfer coefficient derives more proper temperature distribution results and the acceptance criteria of the temperature distribution within ${\pm}10^{\circ}C$ before SCR is satisfied with using this heat transfer mechanism.