• Title/Summary/Keyword: Heat Transfer Model

Search Result 1,852, Processing Time 0.028 seconds

Development of a Fuel Cell System Model for a Small Ship (소형 선박용 연료전지 시스템 모델 개발)

  • Bang, Eun-Shin;Kim, Young-Min;Kim, Myoung-Hwan;Park, Sang-Kyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.569-575
    • /
    • 2020
  • In this study, a fuel cell system model for ship power was developed and verified by comparing the experimental results obtained by supplying pure oxygen. To verify the proposed model, the fuel cell output characteristics when oxygen was supplied were compared with those when air was supplied using an air compressor. In addition, the effect of the change in the thermal properties of the fuel cell system on the output of the stack was examined. Within the experimental range of this study, when pure oxygen was supplied as the cathode supply gas, the calculated and experimental voltages and outputs obtained through modeling were almost the same over the entire load range. When air was supplied instead of oxygen for the cathode supply at a constant load of 560 A, each stack voltage was approximately 14 V, the stack output was approximately 8 kW, and the stack efficiency was approximately 3 %. It was confirmed that the overall system efficiency was reduced by approximately 8 %. Among the thermal properties examined in this study, the heat transfer coefficient of the coolant to the stack was found to have the greatest effect on the output of the stack.

Barrier Techniques for Spinal Cord Protection from Thermal Injury in Polymethylmethacrylate Reconstruction of Vertebral Body : Experimental and Theoretical Analyses (Polymethylmethacrylate를 이용한 척추체 재건술에서 척수의 열 손상을 방지하기 위한 방어벽 기법 : 실험적 및 이론적 분석)

  • Park, Choon Keun;Ji, Chul;Hwang, Jang Hoe;Kwun, Sung Oh;Sung, Jae Hoon;Choi, Seung Jin;Lee, Sang Won;Park, Sung Chan;Cho, Kyeung Suok;Park, Chun Kun;Yuan, Hansen;Kang, Joon Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.3
    • /
    • pp.272-277
    • /
    • 2001
  • Objective : Polymethylmethacrylate(PMMA) is often used to reconstruct the spine after total corpectomy, but the exothermic curing of liquid PMMA poses a risk of thermal injury to the spinal cord. The purposes of this study are to analyze the heat blocking effect of pre-polymerized PMMA sheet in the corpectomy model and to establish the minimal thickness of PMMA sheet to protect the spinal cord from the thermal injury during PMMA cementation of vertebral body. Materials & Methods : An experimental fixture was fabricated with dimensions similar to those of a T12 corpectomy defect. Sixty milliliters of liquid PMMA were poured into the fixture, and temperature recordings were obtained at the center of the curing PMMA mass and on the undersurface(representing the spinal cord surface) of a prepolymerized PMMA sheet of variable thickness(group 1 : 0mm, group 2 : 5mm, or group 3 : 8mm). Six replicates were tested for each barrier thickness group. Results : Consistent temperatures($106.8{\pm}3.9^{\circ}C$) at center of the curing PMMA mass in eighteen experiments confirmed the reproducibility of the experimental fixture. Peak temperatures on the spinal cord surface were $47.3^{\circ}C$ in group 2, and $43.3^{\circ}C$ in group 3, compared with $60.0^{\circ}C$ in group 1(p<0.00005). So pre-polymerized PMMA provided statistically significant protection from heat transfer. The difference of peak temperature between theoretical and experimental value was less than 1%, while the predicted time was within 35% of experimental values. The data from the theoretical model indicate that a 10mm barrier of PMMA should protect the spinal cord from temperatures greater than $39^{\circ}C$(the threshold for thermal injury in the spinal cord). Conclusion : These results suggest that pre-polymerized PMMA sheet of 10mm thickness may protect the spinal cord from the thermal injury during PMMA reconstruction of vertebral body.

  • PDF

EFFICIENCY OF ENERGY TRANSFER BY A POPULATION OF THE FARMED PACIFIC OYSTER, CRASSOSTREA GIGAS IN GEOJE-HANSAN BAY (거제${\cdot}$한산만 양식굴 Crassostrea gigas의 에너지 전환 효율)

  • KIM Yong Sool
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.179-183
    • /
    • 1980
  • The efficiency of energy transfer by a population of the farmed pacific oyster, Crassostrea gigas was studied during culture period of 10 months July 1979-April 1980, in Geoje-Hansan Bay near Chungmu City. Energy use by the farmed oyster population was calculated from estimates of half-a-month unit age specific natural mortality rate and data on growth, gonad output, shell organic matter production and respiration. Total mortality during the culture period was estimated approximate $36\%$ from data on survivor individual number per cluster. Growth may be dual consisted of a curved line during the first half culture period (July-November) and a linear line in the later half period (December-April). The first half growth was approximated by the von Bertalanffy growth model; shell height, $SH=6.33\;(1-e^{0.2421(t+0.54)})$, where t is age in half-a-month unit. In the later half growth period shell height was related to t by SH=4.44+0.14t. Dry meat weight (DW) was related to shell height by log $DW=-2.2907+2.589{\cdot}log\;SH,\;(2, and/or log $DW=-5.8153+7.208{\cdot}log\;SH,\;(5. Size specific gonad output (G) as calculated by condition index of before and after the spawning season, was related to shell height by $G=0.0145+(3.95\times10^{-3}{\times}SH^{2.9861})$. Shell organic matter production (SO) was related to shell height by log $SO=-3.1884+2.527{\cdot}1og\;SH$. Size and temperature specific respiration rate (R) as determined in biotron system with controlled temperature, was related to dry meat weight and temperature (T) by log $R=(0.386T-0.5381)+(0.6409-0.0083T){\cdot}log\;DW$. The energy used in metabolism was calculated from size, temperature specific respiration and data on body composition. The calorie contents of oyster meat were estimated by bomb calorimetry based on nitrogen correction. The assimilation efficiency of the oyster estimated directly by a insoluble crude silicate method gave $55.5\%$. From the information presently available by other workers, the assimilation efficiency ranges between $40\%\;and\;70\%$. Twenty seven point four percent of the filtered food material expressed by energy value for oyster population was estimated to have been rejected as pseudofaeces : $17.2\%$ was passed as faeces; $35.04\%$ was respired and lost as heat; $0.38\%$ was bounded up in shell organics; $2.74\%$ was released as gonad output, $2.06\%$ was fell as meat reducing by mortality. The remaining $15.28\%$ was used as meat production. The net efficiency of energy transfer from assimilation to meat production (yield/assimilation) of a farm population of the oyster was estimated to be $28\%$ during culture period July 1979-April 1980. The gross efficiency of energy transfer from ingestion to meat production (yield/food filtered) is probably between $11\%\;and\;20\%$.

  • PDF

Process design for solution growth of SiC single crystal based on multiphysics modeling (다중물리 유한요소해석에 의한 SiC 단결정의 용액성장 공정 설계)

  • Yoon, Ji-Young;Lee, Myung-Hyun;Seo, Won-Seon;Shul, Yong-Gun;Jeong, Seong-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • A top-seeded solution growth (TSSG) is a method of growing SiC single crystal from the Si melt dissolved the carbon. In this study, multiphysics modeling was conducted using COMSOL Multiphysics, a commercialized finite element analysis package, to get analytic results about electromagnetic analysis, heat transfer and fluid flow in the Si melt. Experimental results showed good agreements with simulation data, which supports the validity of the simulation model. Based on the understanding about solution growth of SiC and our set-up, crystal growth was conducted on off-axis 4H-SiC seed crystal in the temperature range of $1600{\sim}1800^{\circ}C$. The grown layer showed good crystal quality confirmed with optical microscopy and high resolution X-ray diffraction, which also demonstrates the effectiveness of the multiphysics model to find a process condition of solution growth of SiC single crystal.

Assessment on Thermal Transmission Property of Wall Through a Scaled Model Test (축소모형 실험을 통한 벽체의 열관류 측정)

  • Chang, Yoon-Seong;Kim, Sejong;Shim, Kug-Bo;Lee, Sang-Joon;Han, Yeonjung;Park, Yonggun;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.884-889
    • /
    • 2015
  • Appropriate evaluation of thermal insulation property of structural member and valid control of cooling/heating energy are important for improving building's energy efficiency. The typical heating system of house in Korea is the floor heating one. The radiation heating system is not only appropriate to climate and geographic conditions of Korea, but also advantageous to provide emotional comfort by the warm feeling of floor. Based on living conditions in Korea, scaled models of the wooden house and concrete house were designed. The ceiling was made of styrofoam insulation and the four sided walls and bottom were made of plywood and concrete, respectively. The floor was heated by heating film. Indoor vertical temperature distributions by floor heating system were measured by thermocouple, and surface temperatures on walls were measured by infrared thermography. Also, thermal insulation property of wooden wall was evaluated to build database for improving energy efficiency of wooden building. It is expected that collected data during tests of various types of floor and wall composition could be referenced for evaluating thermal environment of actual conditions of houses.

Simulation of Rough Rice Drying by Natural Air(I) (자연공기(自然空氣)에 의한 벼건조(乾燥) 시뮤레이션(I))

  • Chang, D.I.;Chung, D.S.;Pfost, H.B.;Calderwood, D.L.
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.1
    • /
    • pp.118-128
    • /
    • 1983
  • Simulation model of natural air grain drying was discussed and modified to predict the changes of grain moisture content and dry matter loss of rough rice drying. The modified simulation model was then validated using actual test data. A series of simulated drying tests using official weather data for 15 years from Beaumont, Texas, was taken to make minimum airflow rate and maximum bed depth of rough rice drying by natural air, under different conditions of initial moisture content of rough rice, airflow rate and harvest date.

  • PDF

Development of Freezing Time Prediction Model and Thermo-physical Properties of Frozen Kimchi (김치 동결시의 물리적 특성 및 동결시간 예측 모델 개발)

  • 정진웅;김병삼;김종훈
    • Food Science and Preservation
    • /
    • v.10 no.2
    • /
    • pp.125-130
    • /
    • 2003
  • This study was carried out to investigate the thermo-physical properties and design Freezing time prediction model from data of freezing test of Kimchi. Density of Kimchi were measured as 1001.9 ${\pm}$0.03 kg/㎥ at unfrozen state, 987.0 ${\pm}$0.07 kg/㎥ at frozen state and volume of the Kimchi expanded 4.67% at -l5$^{\circ}C$. Initial freezing point of Kimchi and seasoning were -4.0$^{\circ}C$ and -2.5$^{\circ}C$, respectively. Freezing ratio of Kimchi were estimated more than 50% at -5.0$^{\circ}C$, more than 75% at -l0$^{\circ}C$ and approximately 90% at -25$^{\circ}C$. To obtain equation for freezing time prediction of Kimchi, freezing time(Y) was regressed against the reciprocal( $X_3$) of difference of initial freezing point and freezing medium temperature, reciprocal( $X_4$) of surface heat transfer coefficient, the initial temperature( $X_1$) and thickness( $X_2$) of samples. As results of the multiple regression analysis, equations were obtained as follows. Y$_{kimchi}$=3.856 $X_1$+13982.8 $X_2$+8305.166 $X_3$+ 3559.181 $X_4$-639.189( $R^2$=0.9632). These equations shown better results than previous models, and the accuracy of its was very high as average absolute difference of about 10% in the difference between the fitted and experimental results.

A Reaction Kinetic for Selective Catalytic Reduction of NOx with NH3 over Manganese Oxide (NMO, MnO2, Mn2O3) at Low Temperature (망간산화물(NMO, MnO2, Mn2O3)을 이용한 저온에서의 NH3-SCR의 반응속도 연구)

  • Kim, Min Su;Hong, Sung Chang
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.307-314
    • /
    • 2018
  • In this study, NMO (Natural Manganese Ore), $MnO_2$, and $Mn_2O_3$ catalysts were used in the selective catalytic reduction process to remove nitrogen oxides (NOx) using $NH_3$ as a reducing agent at low temperatures in the presence of oxygen. In the case of the NMO (Natural Manganese Ore), it was confirmed that the conversion of nitrogen oxides in the stability test did not change even after 100 hours at 423 K. The Kinetics experiments were carried out within the range where heat and mass transfer were not factors. From a steady-state Kinetics study, it was found that the low-temperature SCR reaction was zero order with the respect to $NH_3$ and 0.41 ~ 0.57 order with the respect to NO and 0.13 ~ 0.26 order with the respect to $O_2$. As temperature increases, the reaction order decreases as a result of $NH_3$ and oxygen concentration. It was confirmed that the reaction between the $NH_3$ dissociated and adsorbedon the catalyst surface and the gaseous nitrogen monoxide (E-R model) and the reaction with the adsorbed nitrogen monoxide (L-H model) occur.

Analysis of Hydrodynamics in a Directly-Irradiated Fluidized Bed Solar Receiver Using CPFD Simulation (CPFD를 이용한 태양열 유동층 흡열기의 수력학적 특성 해석)

  • Kim, Suyoung;Won, Geunhye;Lee, Min Ji;Kim, Sung Won
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.535-543
    • /
    • 2022
  • A CPFD (Computational particle fluid dynamics) model of solar fluidized bed receiver of silicon carbide (SiC: average dp=123 ㎛) particles was established, and the model was verified by comparing the simulation and experimental results to analyze the effect of particle behavior on the performance of the receiver. The relationship between the heat-absorbing performance and the particles behavior in the receiver was analyzed by simulating their behavior near bed surface, which is difficult to access experimentally. The CPFD simulation results showed good agreement with the experimental values on the solids holdup and its standard deviation under experimental condition in bed and freeboard regions. The local solid holdups near the bed surface, where particles primarily absorb solar heat energy and transfer it to the inside of the bed, showed a non-uniform distribution with a relatively low value at the center related with the bubble behavior in the bed. The local solid holdup increased the axial and radial non-uniformity in the freeboard region with the gas velocity, which explains well that the increase in the RSD (Relative standard deviation) of pressure drop across the freeboard region is responsible for the loss of solar energy reflected by the entrained particles in the particle receiver. The simulation results of local gas and particle velocities with gas velocity confirmed that the local particle behavior in the fluidized bed are closely related to the bubble behavior characterized by the properties of the Geldart B particles. The temperature difference of the fluidizing gas passing through the receiver per irradiance (∆T/IDNI) was highly correlated with the RSD of the pressure drop across the bed surface and the freeboard regions. The CPFD simulation results can be used to improve the performance of the particle receiver through local particle behavior analysis.

Evaluation for Mechanical Properties of High Strength Concrete at High Temperature by Stressed Test and Unstressed Test (설계하중 사전재하 및 비재하방식에 의한 고강도콘크리트의 고온특성 평가)

  • Kim, Gyu-Yong;Kim, Young-Sun;Lee, Tae-Gyu;Park, Chan-Kyu;Lee, Seung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.583-592
    • /
    • 2008
  • Recently, the effects of high temperature on compressive strength, elastic modulus and strain at peak stress of high strength concrete were experimentally investigated. The present study is aimed to study the effect of elevated temperatures ranging from 20 to 700 on the material mechanical properties of high strength concrete of 40, 60, 80 MPa grade. In this study, the types of test were the stressed test and stressed residual test that the specimens are subjected to a 25% of ultimate compressive strength at room temperature and sustained during heating and when target temperature is reached, the specimens are loaded to failure. And another specimens are loaded to failure after 24 hour cooling time. Tests were conducted at various temperatures ($20{\sim}700^{\circ}C$) for concretes made with W/B ratios 46%, 32% and 25%. Test results showed that the relative values of compressive strength and elastic modulus decreased with increasing compressive strength grade of specimen and the axial strain at peak stress were influenced by the load before heating. Thermal strain of concrete at high temperature was affected by the preload level as well as the compressive strength. Finally, model equation for compressive strength and elastic modulus of heated high strength concrete proposed by result of this study.