• Title/Summary/Keyword: Heat Transfer Experiment

Search Result 742, Processing Time 0.028 seconds

Experimental Examinations on the Phenomenon of Transfer and Moisture Diffusion in Wood (목재내(木材內)의 수분확산(水分擴散) 및 전달현상(傳達現象)에 관한 실험적 검정(檢定))

  • Lee, Weon-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.75-80
    • /
    • 1996
  • The purpose of this study is to clarify the mechanism of moisture transfer depend on the thickness of the spruce(Picea sitchensis Carr.). Therefore, as the basic research of moisture transmission, the amount of moisture transmission and the moisture distribution in specimens and temperature of it's surfaces in vapor transmission process were investigated. The experiment was conducted in a steady state. and the moisture distribution was measured by knife cutting and weighing the specimens. The following conclusions were obtained ; 1. It can be found that distribution of moisture in the specimen can be approximated by two different straight lines intersecting at nine or ten percent moisture content. The amount of moisture movement defends on the gradient of moisture in the wood. 2. It is investigated that the wood surface moisture contents(MCs) are less for thinner specimens than for thick ones on the absorption side. On the other hand, the wood surface MCs are greater for thinner specimens than for thick ones on the desorption side. The main factor that affects the EMC of wood would be temperature when the relative humidity of atmosphere is constant. The specimen generate heat with the absorption and desorption process. In addition, the velocities of moisture transmission varied with the thicknesses of specimens. If the temperature of wood becomes greater, its MC decreases. Then the difference between surface MC and EMC of adsorption and desorption side becomes greater for thinner specimens. Therefore it is considered that the coefficients of moisture transfer decreases with the increases of the specimens' thicknesses.

  • PDF

The study on the thermal deformation of the rotating rollers in strip continuous casting process (박판 연속 주조과정에 있어서 회전 로울러의 열변형에 관한 연구)

  • 백남주;이상매
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.913-922
    • /
    • 1987
  • In this paper the solidification phenomena at the molten pool has been modeled and simulated in terms with the one dimensional unsteady-state heat transfer of the solid and molten phase and the pressure distribution in the solid phase for the twin-roller continuous casting of Sn-15% Pb. The further purpose of this study was to effectively analyze the thermal and mechanical deformation of roll applying the results of the heat transfer and the pressure distribution to the boundary conditions. The strip thickness of rapidly solidified metallic strip decreases with increasing angular velocity of the roller and with increasing initial roll gap. For this reason the roll spacing and angular velocity of the rolls are considered to be main variables. The recommended optimal casting regimes for continuous strip dimensions is near 0.8mm-1.0mm in thickness at the given angular velocity .omega.=2.0 rad/sec. Results of the experiment using Sn-15% Pb are compared with model predictions. The calculated roll deformation has been in good agreement with the observed value of roll deformatiion. All the deformation. All the deformation of the roller is within the elastic range, the plastic yielding are not occured. However, these elastic stresses are sufficient to take place of the shortened roller life by the thermal fatigue and a notch fatigue. The higher cooling rates were obtained by a twin-roller quenching technique. Also the quenched microstructure of the rapidly solidified shell was verified.

Numerical Investigation of the Urea Melting and Heat Transfer Characteristics with Three Different Types of Coolant Heaters (냉각수 순환 방식 가열원 형상에 따른 요소수 해동 특성에 관한 수치적 연구)

  • Lee, Seung-Yeop;Kim, Man-Young;Lee, Chun-Hwan;Park, Yun-Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.125-132
    • /
    • 2012
  • Urea-SCR system, which converts nitrogen oxides to nitrogen and water in the presence of a reducing agent, usually AdBlue urea solution, is known as one of the powerful NOx reduction systems for mobile as well as stationary applications. For its consistent and reliable operation in mobile applications, such various problems as transient injection, ammonia slip, and freezing in cold weather have to be resolved. In this work, therefore, numerical study on three-dimensional unsteady heating problems were analyzed to understand the melting and heat transfer characteristics such as urea liquid volume fraction, temperature profiles and generated natural convection behavior in urea solution by using the commercial software Fluent 6.3. After validating by comparing numerical and experimental data with pure gallium melting phenomena, numerical experiment for urea melting is conducted with three different coolant heating models named CH1, 2, and 3, respectively. Finally, it can be found that the CH3 model, in which more coolant is concentrated on the lower part of the urea tank, has relatively better melting capability than others in terms of urea quantity of $1{\ell}$ for start-up schedule.

Experimental Study of Natural Convectiion Heat Transfer from a Horizontal Ice Cylinder Immersed in Cold Pure Water (저온의 순수물속에 잠겨있는 수평 얼음원기둥에 의해 야기되는 자연대류 열전달의 실험적 해석)

  • 유갑종;추홍록;문종훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.1019-1030
    • /
    • 1994
  • Natural convection heat transfer from a horizontal ice cylinder immersed in quiescent cold pure water was studied experimentally. The experiment was conducted for the ambient water temperatures ranging from $2.0^{\cric}C$ to $10.0^{\circ}C$. The flow fields around an ice cylinder and its melting shapes were visualized and local Nusselt numbers obtained. Especially, its attention was focused on the density maximum effects and stagnation point Nusselt number. From the visualized photographs of flow fields, three distinct flow patterns were observed with the ambient water temperature variation. The melting shapes of ice cylinder are various in shape with flow patterns. Steady state upflow was occured at the range of $2.0^{\circ}C \leq T_{\infty} \leq 4.6^{\circ}C$ and steady state downflow was occured at $T_{\infty} \geq 6.0^{\circ}C$. In the range of $4.7^{\circ}C < T_{\infty} < 6.0^{\circ}C$, three-dimensional unsteady state flow was observed. Especially, the melting shapes of ice cylinder have formed the several spiral flutes for the temperatures ranging from $5.5^{\circ}C$ to $5.8^{\circ}C$. For upflow regime, the maximum stagnation point Nusselt number exists at $T_{\infty} = 2.5^{\circ}C$ and as the ambient water temperature increases the Nusselt number decreases. At ambient water temperature of about $5.7^{\circ}C$, Nusselt number shows its minimum value.

Resistance Development in Au/YBCO Thin Film Meander Lines under High-Power Fault Conditions (과도 사고 시 Au/YBCO 박막 곡선의 저항 거동)

  • Kim, H.R.;Sim, J.;Choi, I.J.;Yim, S.W.;Hyun, O.B.
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.81-86
    • /
    • 2006
  • We investigated resistance development in $Au/YBa_2Cu_3O_7(YBCO)$ thin film meander lines during high-power faults. The meander lines were fabricated by patterning 300 nm thick YBCO films coated with 200 nm thick gold layers into meander lines. A gold film grown on the back side of the substrate was also patterned into a meander line. The front meander line was connected to a high-power fault-test circuit and the back line to a DC power supply. Resistance of both lines was measured during the fault. They were immersed in liquid nitrogen during the experiment. Behavior of the resistance development prior to quench completion could be understood better by comparing resistance of the front meander lines with that of the back. Quench completion point could be determined clearly. Resistance and temperature at the quench completion point were not affected by applied field strength. The experimental results were analyzed quantitatively with the concept of heat transfer within the meander lines/substrate and to the surrounding liquid nitrogen. In analysis, the fault period was divided into three regions: flux-flow region, region prior to quench completion, and region after quench completion. Resistance was calculated for each region, reflecting the observation for quench completion. The calculated resistance in three regions was joined seamlessly and agreed well with data.

  • PDF

Local heat transfer measurement from a concave surface to an oblique impinging jet (오목한 표면위에 분사되는 경사충돌제트에 대한 국소열전달계수의 측정)

  • 임경빈;김학주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.324-333
    • /
    • 1998
  • Measurements of the local heat transfer coefficients on a hemispherically concave surface with a round oblique impinging jet were made. The liquid crystal transient method was used for these measurements. This method, which is a variation of the transient method, suddenly exposes a preheated wall to an impinging jet while video recording the response of liquid crystal for the surface temperature measurements. The Reynolds number used was 23,000 and the nozzle -to -jet distance was L/d=2, 4, 6, 8 and 10 and the jet angle was $\alpha$=0$^{\circ}$, 15$^{\circ}$, 30$^{\circ}$and 40$^{\circ}$. In the experiment, the maximum Nusselt number at all region occurred at L/d(equation omitted)6 and Nusselt number decreases as the inclined jet angle increases. For the normal jet the contours of constant Nusselt number are circular and as the jet is inclined closer and closer to the surface the contours become elliptical shape. The decreasing rate of the Nusselt number at X/d> 0(upstream) on a surface curvature are higher than those on a flate plate and the decreasing rate of the Nusselt number at X/d <0(downstream) on a surface curvature are lower than those on a flate plate. And also, the decreasing rate of local Nusselt number distribution at X/d <0(upstream) exhibit lower than with X/d <0(downstream) as jet angle increases. The second maximum Nusselt number occurred at long distance from stagnation point as jet angle increases.

  • PDF

NUMERICAL APPROACH FOR QUANTIFICATION OF SELFWASTAGE PHENOMENA IN SODIUM-COOLED FAST REACTOR

  • JANG, SUNGHYON;TAKATA, TAKASHI;YAMAGUCHI, AKIRA;UCHIBORI, AKIHIRO;KURIHARA, AKIKAZU;OHSHIMA, HIROYUKI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.700-711
    • /
    • 2015
  • Sodium-cooled fast breeder reactors use liquid sodium as a moderator and coolant to transfer heat from the reactor core. The main hazard associated with sodium is its rapid reaction with water. Sodium-water reaction (SWR) takes place when water or vapor leak into the sodium side through a crack on a heat-transfer tube in a steam generator. If the SWR continues for some time, the SWR will damage the surface of the defective area, causing it to enlarge. This self-enlargement of the crack is called "self-wastage phenomena." A stepwise numerical evaluation model of the self-wastage phenomena was devised using a computational code of multicomponent multiphase flow involving a sodium-water chemical reaction: sodiumwater reaction analysis physics of interdisciplinary multiphase flow (SERAPHIM). The temperature of gas mixture and the concentration of NaOH at the surface of the tube wall are obtained by a numerical calculation using SERAPHIM. Averaged thermophysical properties are used to assess the local wastage depth at the tube surface. By reflecting the wastage depth to the computational grid, the self-wastage phenomena are evaluated. A two-dimensional benchmark analysis of an SWAT (Sodium-Water reAction Test rig) experiment is carried out to evaluate the feasibility of the numerical model. Numerical results show that the geometry and scale of enlarged cracks show good agreement with the experimental result. Enlarged cracks appear to taper inward to a significantly smaller opening on the inside of the tube wall. The enlarged outer diameter of the crack is 4.72 mm, which shows good agreement with the experimental data (4.96 mm).

A Study on the Explosion to Fire Transition Phenomena of Liquidfied Petroleum Gas (LP가스 폭발로부터 화재로의 천이에 관한 연구)

  • 오규형;이춘하
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.107-113
    • /
    • 1993
  • Small rectangular explosion chamber of its size 25cmX25cmX32cm with a circular bursting diaphram at the top was used to study the mechanism of gas explosion to fire transition phenomena, the process of ignition of solid combustibles during a gas explosion. To visulize the explosion to fire transition phenomena, transparent acryl window and high speed camera system were used. The test piece of solid combustible in this experiments was a 5cm$\times$5cm square sheet of newspaper which was placed in the explosion chamber filled with a LPG-air mixture. The mixture was ignited by an electric spark at the center of the chamber. Explosion to fire transition phenomena and the behavior of out flow and in flow of gas through the opening yielded by bursting the diaphram was visualized with shlieren system and without shlieren system. Diameter of a bursting dlaphram at the top of the explosion chamber was varied 5cm, 10cm, and 15cm, and the position of test piece were varied with 6 point. Explosion pressure was measured with strain type pressure transducer, and the weight difference of the test piece before and after each experimental run was measured. By comparing the weight difference of solid combustibles before and after the experiment and the behavior of out flow and inflow of gas after explosion, it was found that the possibility of ignition was depends on the LPG-air mixture concentration and the exposure period of test piece to the burnt gas. Test result of this experiments it was found that the main factor of this phenomena are that heat transfer to the test piece, and the pyrolysis reaction of test piece. Based on the results, the mechanism of the explosion to fire transition phenomena were inferred ; gas explosion- heat transfer to solid combustibiles ; pyrolysis reaction of solid combutibles : air inflow ; mixing of the pyroly gas with air ignition.

  • PDF

Heat transfer enhancement of metal hydride $(Mm\;(La_{0.6-0.8})\;Ni_{4.0}Co_{0.6}Mn_{0.2}Al_{0.2})$ for hydrogen storage (수소저장용 금속수소화물$(Mm\;(La_{0.6-0.8})\;Ni_{4.0}Co_{0.6}Mn_{0.2}Al_{0.2})$의 전열촉진)

  • Bae, Sang-Chul;Yang, Yang;Masanori, Monde
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.33-36
    • /
    • 2006
  • The effective thermal conductivities of $Mm\;(La_{0.6-0.8})\;Ni_{4.0}Co_{0.6}Mn_{0.2}Al_{0.2}$ (TL-492) with hydrogen and helium have been examined. Experiment results show that pressure has great influence on effective thermal conductivity in Low pressure range (below 0.5 MPa). And that influence decreases rapidly with increase of gas pressure. The reason is at low pressure, the mean free path of gas becomes greater than effective thickness of gas film which is important to the heat transfer mechanism in this research. And, carbon fibers have been used to try to enhance the poor thermal conductivity of TL-492. Three types of carbon fibers and three mass fractions have been examined and compared. Naturally, the highest effective thermal conductivity has been reached with carbon fiber which has highest thermal conductivity, and highest mass fraction. This method has acquired 4.33 times higher thermal conductivity than pure metal hydrides with quite low quantity of additives, only 0.99wt% of carbon fiber. This is a good result comparing to other method which can reach higher effect ive thermal conductivity but needs much higher mass fraction of additives too.

  • PDF

Plugging and Re-opening Phenomena of the 5Cr-1Mo Steel Leak Hole by Water Leakage in Sodium Atmosphere (소듐 분위기에서 물누출에 의한 5Cr-1Mo Ferrite강 구멍의 막힘과 재개방 현상)

  • Jeong, Kyung-Chai;Kim, Tae-Joon;Choi, Jong-Hyeun;Park, Jin-Ho;Hwang, Sung-Tai
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.674-679
    • /
    • 1998
  • Small water leak experiment was carried out in liquid sodium atmosphere using a specimen of ferrite steel, which will be expected to be a material of the heat transfer tube of liquid metal fast breeder reactor. Self-plugging phenomena of leak path could be explained by the products of reaction and corrosion by sodium-water reaction. Also, re-opening mechanism of self-plugged path could be explained by the thermal transient and vibration of heat transfer tube. As a result, perfect re-opening time of self-plugged leak path was observed to be 129 minutes after water leak initiation. Re-opening shape of a specimen was appeared with double layer of circular type, and re-opening size of this specimen surface was about 2 mm diameter on sodium side.

  • PDF