• Title/Summary/Keyword: Heat Transfer Experiment

Search Result 742, Processing Time 0.028 seconds

A Study of Temperature Predictions for Manual Transmission Clutch System via Anti-fade and Hill Start Virtual Test (내페이드와 힐스타트 가상 시험을 통한 수동변속기 클러치 시스템의 온도 예측에 관한 연구)

  • Park, Ki-Jong;Kim, Dong-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.122-129
    • /
    • 2015
  • Excessive overheating to a manual transmission clutch system under operating conditions can be considered the main reason of its performance degradation. The clutch system has to be ensured with its service life by showing that it passes the extreme tests called anti-fade test and hill start test in a certain design step. In general, design feedbacks from these kinds of the experiments are adapted to the system to enhance its performance. However, it usually takes much time and costs a lot due to the repetition of the tests. In this research, a process to calculate temperature of the clutch system was developed to determine whether the design can be passed the anti-fade test and hill start test in the design phase. The process incorporates many CAE techniques such as heat transfer analysis using 1D dynamic simulation method, system dynamics, CFD and parametric optimization. CFD is utilized to analyze 3-dimensional heat transfer of the clutch system and fluid dynamics of air in the clutch housing. The process was applied for the clutch systems in several vehicle models. The results was compared with those of the experiment. The applicability of the developed process was verified by comparing the predicted results with experimental results.

RELAP5 Analysis of a Condensation Experiment in an Inverted U-tube

  • Park, Chul-Jin;Lee, Sang-Yong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.383-388
    • /
    • 1995
  • Two-phase transient phenomena in the noncondensable gas-filled closed loop was investigated numerically using the RELAP5/MOD3 version 3.1 computer code. The condensation heat transfer correlation for noncondensable gases was studied in detail. Two modes of the reflux condensation which can be characterized by countercurrent flow of steam and its condensed water and the oscillatory between reflux condensation and natural circulation were predicted well. However, the natural circulation mode which the condensed water carried over the U-bend concurrently with steam was failed to predict.

  • PDF

Experiment of Heat Transfer Characteristics through Insulated Farm Structures Coated with Surface Treatment (단열구조용 표면 코팅제의 열전달 특성 실험)

  • 서원명;윤용철;권진근;박성우
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2003.04a
    • /
    • pp.157-160
    • /
    • 2003
  • 일반적인 시설농업의 경우, 광을 주된 에너지원으로 하는 온실을 제외하면, 시설내부의 주요 환경인자인 온도 유지를 위해 단열이 요구된다. 특히 곡물을 저장하는 사일로를 비롯하여 최근 증가 추세를 보이는 시설버섯 재배사, 그리고 양봉사나 축사 등의 단열은 냉방 및 난방에 소요되는 경비와 관련됨으로서 영농의 경영합리화와 직결된다. 따라서 단열의 정도를 나타내는 R-치의 적정범위와 단열처리의 시공성 등은 시설의 초기투자와 유지관리에 영향을 미치게 된다. (중략)

  • PDF

Heat of Combustion Experiment Based on the Ratio of Moisture Content of Infected and Non-Infected Bursaphelenchus Xylophilus (재선충 감염 소나무와 비 감염 소나무의 수분함유율에 따른 연소열 실험)

  • Kwon, Hyuk;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.443-451
    • /
    • 2021
  • This study compared and analyzed the thermal characteristics based on the ratio of moisture content of infected and non-infected Bursaphelenchus Xylophilus by heat of combustion experiment. The experiment results are as follows. The analysisresult of the ratio of water content shows that 19.92% on average for infected Bursaphelenchus Xylophilus and 26.27% for non-infected which decreases water content as the size of conduction, convection, and radiant heat increases in case of fire. As the vaporization of the moisture content accelerates, the average moisture content is reached, and the result is contrary to the thermal characteristics of the wood that the moisture content is not ignited by a heat source when the moisture content is under 15%. The combustion heat analysis result showed that infected and non-infected Bursaphelenchus Xylophilus had no significant difference in combustion heat at about 3%. However, it shows that combustion heat is higher than other species. In conclusion, decreasing in moisture content based on the increasing conduction, convection, and radiant heat is one of the direct causes of ignition, and the lower the moisture content, the faster the fire spreads.

Effect of supercooling and cooling rate on a continuous ice slurry formation using a plate heat exchanger (판형 열교환기에서 유동 과냉도 및 냉각속도가 연속제빙에 미치는 영향)

  • Lee, Dong-Gyu;Peck, Jong-Hyun;Hong, Hi-Ki;Kang, Chae-Dong
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.138-143
    • /
    • 2006
  • The peculiarity of ice slurry, such as liquidity, high heat transfer rate and easy storage can also find to supercooled type dynamic ice storage system(DISS) which is one of the DISS. However, in order to accomplish continuous ice formation in the system without mechanical moving parts, supercooled aqueous solutionshould be formed stable through cooling heat exchanger and be dissoluted in storage tank. In previous research, the time of ice slurry increased as the pressure of the cooling heat exchanger(PHX) increased. In this study, a cooling experiment of an ethylene glycol 7mass% solution was performed with various inlet temperature of the PHX, which has constant brine inlet temperature of $-7^{\circ}C$. The temperature in the storage tank maintained to freezing point of the solution. At results, the time of ice slurry formation increased as the supercooling degree decreased and the cooling rate increased.

  • PDF

Thermo-physical Properties of the Asphalt Pavement by Solar Energy (태양열 에너지에 의한 아스팔트 포장의 열전달 특성)

  • Lee, Kwan-Ho;Kim, Seong-Kyum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.717-724
    • /
    • 2020
  • In general, the factors affecting the heat transfer of asphalt pavement are divided into weather factors and pavement materials. Among them, material factors include the thermophysical and surface properties. An experiment was conducted on the thermal-physical factors of asphalt, which are the basis for the pavement failure model. The thermal conductivity, specific heat capacity, thermal diffusivity, and thermal emissivity were evaluated as the thermo-physical properties of asphalt. The specimens (WC-2 & PA-13) used in the experiment were compacted with a Gyratory Compactor. The experimental results of WC-2 and PA-13 showed a thermal conductivity of 1.18W/m·K and 0.9W/m·K, specific heat capacity of 970.8J/kg·K and 960.1J/kg·K, thermal emissivity of 0.9 and 0.91, and thermal diffusivity of 5.15㎡/s and 4.66㎡/s, respectively. Experiments on the heat transfer characteristics (thermo-physical properties) of asphalt pavement that can be used for thermal failure modeling of asphalt were conducted.

A Study on the natural Convection and Radiation in a Rectangular Enclosure with Ceiling Vent (천장개구부를 갖는 정사각형 밀폐공간내의 자연대류-복사 열전달에 관한 연구)

  • Park Chan-kuk;Chu Byeong-gil;Kim chol;Jung Jai-hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.28-39
    • /
    • 1998
  • This study investigated the natural convection and radiation in a rectangular enclosure with ceiling vent experimentally and numerically. A heat source is located on the center of the bottom surface. The analysis was peformed a pure convection and is combination of natural convection and radiation. The shape of the considered two dimensional model is a square whose center of ceiling($30\%$) is opened. The numerical simulations are carried out for the pure natural convection case and the combined heat transfer case by using the SIMPLE algorithm. For the turbulent flow, Reynolds stresses are closed by the standard $k-{\epsilon}$ model and the wall function is used to determine the wall boundary conditions. The experiment was performed on the same geometrical shape as the computations. The radiative heat transfer is analized by the S-N discrete ordinates method. The results of pure natural convection are compared with those of combined heat transfer by the velocity vectors, stream lines, isothermal lines. The results obtained are as follows 1. Comparing the results of pure convection with those of the combined convection-radiation through the shape of stream lines, isothermal lines are similar to each other. 2. The temperature fields obtained by numerical method are compared to those obtained by experimental one, and it is found that they are showed mean relative error $8.5\%$. 3. Visualization bt smoke is similar to computational results.

  • PDF

Development of a Hot Water Boiler System with a Rice Hull Furnace (왕겨 연소기(燃燒機)를 이용(利用)한 온수(溫水)보일러 시스템 개발(開發) (I) -실험적(實驗的) 연구(硏究)-)

  • Lee, Y.K.;Park, S.J.;Baek, P.K.;Noh, S.H.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.4
    • /
    • pp.31-43
    • /
    • 1987
  • This study was performed to develop a hot water boiler system with small scale automatic rice hull furnace for the multi-purpose use in the farm. For the experiment a prototype hot water boiler system with rice hull furnace was fabricated, which was equipped with automatic hull feeder, igniter and ash removal device. Optimum operational conditions of the prototype: system were analyzed. The results arc summarized as follows. 1. The temperature measured right above the burning surface should be higher than $500^{\circ}C$ combustion. 2. The top zone of the combustion chamber was the most suitable location of the thermocouple to pick up the control temperature for the automatic operation of the rice hull furnace. 3. The content of carbon monoxide in the flue gas was increased with the filling height of burning material but it was less than 0.3 percent in volume in this experiment. When the filling height was expressed as the ratio of rice hull feed rate to the volume of the combustion chamber above the burning surface, the optimum ratio was about $150kg/m^3-h$. 4. The combustion efficiency of the prototype was higher than 95 percent when the feed rate was 1.1 to 2.3 kg/h and moisture content of rice hull was 22.4 percent (w.b.) or less. 5. It was estimated that the optimum operational conditions of the system were 1.3 to 2.0 kg/h in feed rate, 70 to 100 percent in excess air and 500 to $510^{\circ}C$ in control temperature. 6. The efficiency of coil heal exchanger increased with a decrease in feed rate of rice hull. When the rice hull feed rates were 1.1, 1.7 and 2.3 kg/h, the efficiencies of coil heat exchanger were about 34, 30 and 25 percent and heat transfer rates were 5.7, 7.6 and 8.8 MJ/h, respectively. When the flat plate heat exchanger was used in addition to the coil heat exchanger, the efficiency of the heat exchanger system increased to 48 percent.

  • PDF

Heat transfer enhancement of metal hydride $(Mm(La_{0.6-0.8})Ni_{4.0}Co_{0.6}Mn_{0.2}Al_{0.2})$ for hydrogen storage (수소저장용 금속수소화물$(Mm(La_{0.6-0.8})Ni_{4.0}Co_{0.6}Mn_{0.2}Al_{0.2})$의 전열촉진)

  • Bae Sang-Chul;Yang Yang;Masanori Monde
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.75-80
    • /
    • 2006
  • The effective thermal conductivities of $Mm(La_{0.6-0.8})Ni_{4.0}Co_{0.6}Mn_{0.2}Al_{0.2}$ [TL-492] with hydrogen and helium have been examined. Experiment results show that pressure has great influence on effective thermal conductivity in low pressure range [below 0.5 MPa]. And that influence decreases rapidly with increase of gas pressure. The reason is at low pressure, the mean free path of gas becomes greater than effective thickness of gas film which is important to the heat transfer mechanism in this research. And, carbon fibers have been used to try to enhance the poor thermal conductivity of TL-492. Three types of carbon fibers and three mass fractions have been examined and compared. Naturally, the highest effective thermal conductivity has been reached with carbon fiber which has highest thermal conductivity, and highest mass fraction. This method has acquired 4.33 times higher thermal conductivity than pure metal hydrides with quite low quantity of additives, only 0.99 wt% of carbon fiber. This is a good result comparing to other method which can reach higher effective thermal conductivity but needs much higher mass fraction of additives too.

  • PDF

An investigation on the system characteristics of a refrigerator with alternative refrigerants (대체냉매를 이용한 가정용 냉장고의 시스템 특성에 관한 연구)

  • 신진규;문춘근;윤정인
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.753-762
    • /
    • 1998
  • A domestic refrigerator is composed of many components such as a compressor, evaporator, capillary tube, and the cabinet which plays a great role on the cycle performance, even if it is not the basic component part in the cycle. Recently, the restriction policy on the energy-saving and environmentally friendly refrigerator is reinforced in our nation as well as developed countries. Therefore, in this paper, cycle simulations and experiments were carried out ito understand the characteristics of the cycle performance using CFC 12, HFC 134a, and HC 600a and to know how changes in UA(overall heat transfer coefficients$\times$ heat transfer area) of evaporator, the position displacement of compressor, and the rpm of fan in the freezing room which has influence on the cycle performance. The result shows that the quantitative values of simulation and experiment are not coincident, but their trend is similar. When HFC 134a and HC 600a were used without the change of design in refrigerator used CFC 12, the performance of system in HC 600a is 30% lower, and the case of HFC 134a is 10% lower than that of CFC 12 on freezing temperature.

  • PDF