• Title/Summary/Keyword: Heat Transfer Correlation

Search Result 478, Processing Time 0.027 seconds

Pool boiling heat transfer coefficients of alternative refrigerants in enhanced tubes (열전달 촉진관에서 대체냉매의 비등열전달계수)

  • Lee, Jun-Gang;Go, Yeong-Hwan;Jeong, Dong-Su;Song, Gil-Hong;Kim, Jong-Bo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.980-991
    • /
    • 1998
  • In this study, nucleate pool boiling heat transfer coefficients of alternative refrigerants on a plain, low fin, and two enhanced tubes were measured and compared against each other. To obtain data at conditions similar to the actual evaporator, a fluid heating method was employed instead of an electric heating method in the experiments. R123, R134a, R22 and R410a were used as working fluids and data were taken at 7 deg.C ar heat fluxes of 20 ~ 100 kW/m$\^$2/. Comparison of the plain tube data against some correlations showed that the simplest correlation of Cooper based on reduced pressure predicted the data for all fluids tested with a 10% deviation. For all refrigerants, enhanced tubes composed of subsurface and subtunnels, especially Thermoexcel-E tube, showed the highest heat transfer coefficients among the tubes tested with one exception that the low fin tube's performance was better than those of enhanced tubes for high vapor pressure fluid such as R410a at high heat flux. Finally, a low fin and enhanced tubes showed higher heat transfer enhancement for low vapor pressure of R123 than for high vapor pressure fluisd. For R123, the enhancement factors for Turbo-B and Thermoexcel-E tubes were 2.8 ~ 4.8 and 4.6 ~ 8.1 respectively.

VALIDATION OF GRID AND BOUNDARY CONDITIONS FOR OPTIMAL DESIGN OF HEAT RECOVERY SYSTEM (열 회수 시스템의 최적 설계를 위한 격자 및 경계 조건 검증에 관한 연구)

  • Lee, D.G.;Shin, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.608-609
    • /
    • 2011
  • In this study, we tried to validate FLUENT solver model and domain setting for the problem of convective heat transfer in multiple tube bank under transitional zone. We have paid special attention to verify proper boundary conditions and the grid convergence. Through validation work, it is found that unsteady solution method with two-dimensional simulation domain can produce reasonable accurate results compared with existing experimental data. Simulation results with steady solution generates relatively large error. We found that both steady and unsteady method for three-dimensional domain shows acceptable accuracy. Further parametric study for deriving correlation from transverse and longitudinal pitch is currently underway.

  • PDF

Analysis of Heat Transfer Characteristics in the Thermally Developing Region of a Porous Channel by LTNE Model (LTNE 모델을 이용한 다공성 채널 입구영역에서의 열전달 특성 해석)

  • Lee, Sang-Tae;Lee, Kwan-Soo;Kim, Seo-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.983-990
    • /
    • 2002
  • A numerical analysis has been carried out on forced convection heat transfer in the developing region of a porous channel. The channel is filled with an isotropic porous medium. At the channel walls, a uniform heat flux is given. Comprehensive numerical solutions are acquired to the Brinkman-Forchheimer extended Darcy equation and the LTNE model which does not employ the assumption of local thermal equilibrium between solid and fluid phases. Details of thermal fields in the developing region are examined over wide ranges of the thermal parameters. The numerical solutions at the fully developed region are compared with the previous analytical solutions. The correlation for predicting local Nusselt number in a porous channel is proposed.

Influence of the Geometry on the Natural Convection Heat Transfer inside a Vertical Cylinder (수직 원형관내 자연대류 열전달에서 기하구조의 영향)

  • Ohk, Seung-Min;Chung, Bum-Jin
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.97-103
    • /
    • 2015
  • Natural convection heat transfer rates in vertical pipes were measured varying the diameter, length, and roughness of vertical cylinder. To achieve high Rayleigh number with relatively small test rig, mass transfer experiments instead of heat transfer were performed based on the analogy. Prandtl number was 2,014. The length of vertical cylinder was 0.1m, 0.3m, and 0.5m, which correspond to GrL $4.2{\times}10^7$, $1.1{\times}10^9$, and $5.5{\times}10^9$. To each length of vertical cylinder, the heat transfer rates were measured varying the iameter 0.005m, 0.01m, and 0.03m. The heat transfer rate for a short length pipe(0.1m) agreed with the prediction from Le Fevre correlation developed for a vertical plate for all diameter. The heat transfer rate decreases as the diameter and the length of the pipe increases. The heat transfer rate inside of vertical cylinder is affected by roughness only for a laminar flow regime.

A Study on the Performance of Boiling Beat Transfer of Inclined Thermosyphon Heat Exchangers with Internal Grooves (경사 열사이폰 열교환기의 비등열전달 성능에 관한 연구)

  • Cho, Dong-Hyun;Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.2
    • /
    • pp.202-209
    • /
    • 2005
  • This study concerns the performance of boiling heat transfer in inclined thermosyphons with internal grooves. A study was carried out with the performance of the heat transfer of the inclined thermosyphon having 60 internal grooves in which boiling and condensation occur. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphon is also tested for comparison. Distilled water, methanol and ethanol have been used as the working fluid. The inclination angle, three working fluids, heat flux and the boiling heat transfer coefficient at the evaporator zone are estimated from the experimental results. The experimental results have been assessed and compared with existing correlations. Imura's and Kusuda's correlation for boiling showed in good agreement with experimental results within ${\pm}20%$ in plain thermosyphon. The high heat transfer coefficient was found between $25^{\circ}$ and $30^{\circ}$ of inclination angle for water and between $20^{\circ}$ and $25^{\circ}$ for methanol and ethanol. The relatively high rates of heat transfer have been achieved in the thermosyphon with internal micro grooves.

  • PDF

A Study on the Optimum Design of Axial Rotary Sensible Heat Exchanger for the Heat Recovery of Exhaust Gas (배기열(排氣熱) 회수용(回收用) 축류(軸流) 회전형(回轉形) 현열교환기(顯熱交換器)의 최적설계(最適設計)에 관한 연구(硏究))

  • Choi, Y.D.;Park, S.D.;Woo, J.S.;Tae, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.2
    • /
    • pp.131-141
    • /
    • 1991
  • A method of optimum design of an axial rotary sensible heat exchanger for the heat recovery of exhaust gas from the air conditioning space was developed in consideration of economics of investment cost and profit according to the installation of heat exchangers. Leakage rate of exhaust gas was calculated and the correlation for the pressure drop due to leakage of exhaust gas was proposed. Heat transfer between the matrix and exhaust and intake gas was analysed to calculate the effectiveness of heat exchanger, which was used for the optimum design of rotary heat exchanger. The results show that optimum rotational speed increases as the length of rotor increases and there exists optimum NTU which maximizes the gain of total cost according to the installation of rotary heat exchanger.

  • PDF

Experimental study of correlation between aqueous lithium chloride-air temperature difference and mass transfer performance

  • Fatkhur, Rokhmaw;Agung, Bakhtiar;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.195-198
    • /
    • 2011
  • Liquid desiccant material, such as lithium chloride (LiCl) or halide slits are usually used on air conditioning application for controlling the humidity of high Outdoor Air (OA). Solar energy is usually used to heat the liquid in regeneration process of those desiccant. The mass transfer it self is driven by the temperature different between the liquid desiccant and the input air. This experiment study is analyzing the characteristic of the aqueous LiCl-air temperature different in variance specific gravity, especially in range of temperature different using the solar energy as the heat generator. The experiment has done by variating the concentration of the LiCl with specific gravity 1.210 and 1.150. For the comparison the pure water is also used. The result show that the mass transfer rate is increased in every variation as the increases of the temperature different, and the weeker aqueous solution of the LiCl the highest mass transfer coefficient.

  • PDF

Heat Transfer Characteristics During Gas Cooling Process of Carbon Dioxide in a Horizontal Tube (수평관내 초임계 영역의 Co2 냉각 열전달 특성)

  • Son, Chang-Hyo;Lee, Dong-Gun;Oh, Koo-Kyu;Jeong, Si-Young;Kim, Young-Lyoul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.289-295
    • /
    • 2004
  • The heat transfer coefficient and pressure drop during gas cooling process of carbon dioxide in a horizontal tube were investigated. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flowmeter, an evaporator, and a gas cooler(test section). The main components of the water loop consist of a variable-speed pump, an isothermal tank, and a flowmeter. The gas cooler is a counterflow heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. The test section consists of smooth, horizontal stainless steel tube of the outer diameter of 9.53mm and of the inner diameter of 7.75mm. The length of the test section is 6m. The refrigerant mass fluxes were 200∼300kg/(m2$.$s) and the inlet pressure of the gas cooler varied from 7.5㎫ to 8.5㎫. The main results were summarized as follows : Pressure drop of CO2 increases with increasing gas cooler pressure. The friction factors of CO2 in a horizontal tube show a relatively good agreement with the correlation by Blasius. The heat transfer coefficient of CO2 in transcritical region increases with decreasing gas cooler pressure and decreasing mass flux of CO2. Most of correlations proposed in a transcritical region showed significant deviations with experimental data except for those predicted by Gnielinski.

An experimental study on the thermal entrance lengths for viscoelastic polymer solutions in turbulent tube flow (점탄성 특성을 가진 폴리머용액의 난류유동 열적입구길이에 관한 실험적 연구)

  • 유상신;황태성;엄정섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1189-1196
    • /
    • 1988
  • Thermal entrance lengths of turbulent tube flow for viscoelastic polymer solutions are investigated experimentally in the recirculating flow system with tubes of inside diameters 8.5mm(L/D=710) and 10.3mm(L/D=1158), respectively. In the present system, the hydrodynamic and thermal boundary layers develop simultaneously from the beginning of the test section. To provide the boundary condition of constant heat flux at the wall, the test tubes are heated directly by electricity. The polymer solution used in the current study is 1000 wppm aqueous solution of polyacrylamide(Separan AP-273). The apparent viscosity of the polymer solutions circulating in the flow system are measured by the capillary tube viscometer at regular time intervals. Thermal entrance lengths vary due to the rate of degradation. The entrance lengths of degraded polymer solutions are about 500~600 times the diameter. However, the entrance lengths of fresh polymer solutions are greater than the lengths of the test tubes used in this study suggesting that thermal entrance lengths for viscoelastic polymer solutions are greater than 1100 tube times the diameters. Friction factor is almost insensitive to the degradation, but the heat transfer $j_{H}$-factor is affected seriously by degradation. Based on the present experimental data of fresh solutions a correlation for the heat transfer $j_{H}$-factor is presented.ted.

Near-Wall Modelling of Turbulent Heat Fluxes by Elliptic Equation (타원방정식에 의한 벽면 부근의 난류열유속 모형화)

  • Shin, Jong-Keun;An, Jeong-Soo;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.526-534
    • /
    • 2004
  • A new second-moment closure model for turbulent heat fluxes is proposed on the basis of the elliptic equation. The new model satisfies the near-wall balance between viscous diffusion, viscous dissipation and temperature-pressure gradient correlation, and also has the characteristics of approaching its respective conventional high Reynolds number model far away from the wall. The predictions of turbulent heat transfer in a channel flow have been carried out with constant wall heat flux and constant wall temperature difference boundary conditions respectively. The velocity field variables are supplied from the DNS data and the differential equations only fur the mean temperature and the scalar flux are solved by the present calculations. The present model is tested by direct comparisons with the DNS to validate the performance of the model predictions. The prediction results show that the behavior of the turbulent heat fluxes in the whole region is well captured by the present model.