• Title/Summary/Keyword: Heat Transfer Correlation

Search Result 478, Processing Time 0.023 seconds

A Study on the Transfer of the Oscillator's Motion Information with 2 Degrees of Freedom;Thermal Boundary Resistance (2자유도 진동계의 운동정보 전달에 관한 연구;경계면열저항)

  • Choi, Soon-Ho;Choi, Hyun-Kye;Jin, Chang-Fu;Kim, Kyung-Kun;Yoon, Seok-Hun;Oh, Cheol
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1102-1107
    • /
    • 2005
  • The analysis of the thermal boundary resistance is very important in the both cases of microscale and macroscale systems because it plays a role of thermal barrier against a heat flow. Especially, since fairly large heat energy is generated in microscale or nanoscale systems with electronic chips, the thermal boundary resistance is a key factor to guarantee the performance of those devices. In this study, the transfer of the oscillator's motion information with 2 degrees of freedom is investigated for clarifying the mechanism of a thermal boundary resistance. We found that the transfer of the oscillator's motion information is defined as a cross-correlation coefficient and the magnitude of it determines the temperature jump over a solid interface. That is, the temperature jump over an interface increases as the magnitude of a cross-correlation coefficient decreases and vice versa.

  • PDF

Thermal Characteristics of Discrete Heat Sources Using Coolants

  • Choi, Min-Goo;Cho, Keum-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • The present study investigated the effects of experimental parameters on the thermal characteristics of an in-line 6x1 array of discrete heat sources for a test multichip module using water, PF-5060 and paraffin slurry. The parameters were heat flux of 10-40W/$cm^2$. Reynolds number of 3,000~20,000 and mass fraction up to 10% for paraffin slurry The size of paraffin slurry was within 10~40$\mu$m before and after experiments. The local heat transfer coefficients for the paraffin slurry were larger than those for water. Thermally fully developed conditions were observed after the third or fourth row (five or seven times of the chip length) and the paraffin slurry showed effective cooling performance at the high heat flux The paraffin slurry with the mass fraction of 5% showed the most efficient cooling performance when the heat transfer and the pressure drop in the test section are considered simultaneously. The experimental data at the fourth and sixth rows are best agreed with the values predicted by the Malina and Sparrow`s correlation among other correlations, and the empirical correlations for water and 5% paraffin slurry were obtained at the first and sixth rows when the channel Reynolds number is over 3,000.

  • PDF

Heat Transfer Characteristics of CO2 at Supercritical Pressure in a Vertical Circular Tube (수직원형관에서 초임계압 CO2의 열전달 특성)

  • Yoo, Tae-Ho;Bae, Yoon-Yong;Kim, Hwan-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • At supercritical pressure, the physical properties of fluid change substantially and the heat transfer at a temperature similar to the critical or pseudo-critical temperature improves considerably; however, the heat transfer may deteriorate due to a sudden increase in the wall temperature at a certain condition of a mass and heat flux. In this study, the heat transfer rates in $CO_2$ flowing vertically upward and downward in a circular tube with a diameter of 4.57 mm under various conditions were calculated by measuring the temperature of the outer wall of the tube. The published heat transfer correlations were analyzed by comparing their prediction values with 7,250 experimental data. By introducing a buoyancy parameter, a heat transfer correlation, which could be applied only to a normal heat transfer regime, was extended such that it can be applied to regime of heat transfer deterioration. The published criteria for heat transfer deterioration were evaluated against the conditions obtained from the experiment in this study.

Modelling of Thermal Discharge Performance for Ice-on-coil Type Ice-Storage Tank (관외착빙형 빙축열조의 방열성능 모델링)

  • Lee, Sang-Ryoul;Lee, Kyoung-Ho;Choi, Byoung-Youn;Han, Seong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.280-285
    • /
    • 2001
  • This paper presents a modelling of thermal discharge performance for a static ice-on-coil ice-storage tank. Through the present study, discharging characteristics were examined with the existing results of theoretical and numerical heat transfer analyses. Also, an experiment was conducted to obtain a real set of discharge performance. The thermal effectiveness, the ratio of the actual heat transfer rate to the maximum possible heat transfer rate, decreased when the stored energy decreased during discharging period. And the effectiveness increased as the coolant flow rate through the storage increased, of which increasing rate decreased abruptly near the maximum and the minimum stored energy. An empirical correlation was obtained from the experimental and the numerical analysis data.

  • PDF

Investigation of Spacer Grid Thermal Mixing Performance Based on Hydraulic Tests

  • Yang, Sun-Kyu;Min, Kyung-Ho;Chung, Moon-Ki
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.377-382
    • /
    • 1995
  • An evaluation method of spacer grid thermal mixing performance in rod bundles is suggested based on hydraulic tests in a single phase flow. Heat transfer correlation was derived by the analogy between momentum and heat transfer. Three of major factors, such as blockage ratio of spacer grid, convective flow swirling, and turbulent intensity, were found to be significantly influential to the spacer grid thermal mixing performance. Local heat transfer near spacer grid was predicted for the hydraulic test of 6 ${\times}$ 6 rod bundles with neighboring different spacer grids.

  • PDF

Computational Investigations of Impingement Heat Transfer on an Effused Concave Surface

  • Kumar, M. Ashok;Prasad, Bhamidi V.S.S.S.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.2
    • /
    • pp.72-90
    • /
    • 2012
  • A computational study is reported on flow and heat transfer characteristics from five rows of circular air jets impinging on a concave surface with four rows of effusion holes. The effects of exit configurations of spent air and the arrangement of jet orifices and effusion holes for a jet Reynolds number of 7500 is investigated. In all, eight cases are studied and a good qualitative correlation is found among their flow patterns, pressure variations and heat transfer distributions.

Two-Phase Flow Patterns of $CO_{2}$ in a Heated Narrow Rectangular Channel (미세사각채널에서 $CO_{2}$의 이상유동 양식에 관한 연구)

  • Kim Yongchan;Yun Rin;Chung Jin Taek
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.66-72
    • /
    • 2004
  • The heat transfer and pressure drop characteristics of $CO_{2}$ are substantially different from those for CFC and HCFC refrigerants. In addition, geometric effects on two-phase flow patterns of $CO_{2}$ are also very significant in many respects. Therefore, two-phase flow patterns of $CO_{2}$ in a narrow rectangular channel or a small diameter tube whose gap size or hydraulic diameter is less than 2 mm are very important to understand heat transfer characteristics and to develop an appropriate heat transfer correlation. In the present study, the evaporation process of $CO_{2}$ in a narrow rectangular channel is visualized at various test conditions, and then the effects of operating conditions are analyzed.

  • PDF

TRANSITIONAL FLOW ANALYSIS OVER DOUBLE COMPRESSION RAMP WITH NOSE BLUNTNESS IN SUPERSONIC FLOW (초음속 이중 압축 램프의 앞전 곡률에 따른 천이 유동 해석)

  • Shin, Ho Cheol;Sa, Jeong Hwan;Park, Soo Hyung;Byun, Yung Hwan
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.36-43
    • /
    • 2015
  • Accurate prediction of supersonic transition is required for the heat transfer estimation over supersonic double compression ramp flows. Correlation-based transition models were assessed for a supersonic double ramp problem. Numerical results were compared with experimental data from RWTH Aachen University. A parametric study on the nose bluntness was performed using a selected transition model. As the nose bluntness increases, the boundary layer thickness is increased and the triple point of shock interactions moves downstream. The peak magnitude of the heat transfer is consequently decreased with the nose bluntness.

Numerical Ananlysis on the Tubulent Flow and Heat Transfer in the Tunnel Laminar Flow Type Clean Room(1) (터널층류방식 청정실에서의 난류운동과 열전달에 관한 수치해석(1))

  • 정한식;정효민
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.27-33
    • /
    • 1995
  • The turbulent flow and heat transfer in the tunnel laminar flow type clean room is investigated by a numerical simulation. The model clean room is assumed to be a rectngular $5m\times3m$, in which a worktable of 0.75m hight, and 1.5m or 3m long at the floor. Major parameters are the inlet flow velocity, inlet hole size and worktable surface distance. The mean Nusselt number is increased by increasing Reynolds number and can be expressed by the correlation equation.

  • PDF

Numerical Study on FC-72 Condensing Flow in a Micro-Channel (마이크로채널 내의 FC-72 흐름응축에 관한 수치적 연구)

  • Kim, Sung-Min
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.1
    • /
    • pp.30-34
    • /
    • 2015
  • This study concerns flow and heat transfer characteristics of FC-72 condensing flow in a micro-channel. A computational model of condensing flow with a hydraulic diameter of 1 mm is constructed using the FLUENT computational fluid dynamics code. The computed void fraction contour plots are presented for different mass velocities. The smooth-annular, wavy-annular, transition and slug flows are observed with the model, which are quite similar to those observed in a micro-channel experiment. The computed two-phase condensing heat transfer coefficient is compared with previous empirical correlation for two-phase condensation heat transfer in micro-channels.