• 제목/요약/키워드: Heat Transfer Control

검색결과 549건 처리시간 0.028초

정밀금형 알루미늄 합금주조공정시 주물/금형 접촉면에서의 Inverse 열전달해석에 관한 연구 (Inverse Heat Transfer Analysis at the Mold/Casting Interface in the Aluminum Alloy Casting Process with Precision Metal Mold)

  • 문수동;강신일
    • 한국주조공학회지
    • /
    • 제18권3호
    • /
    • pp.246-253
    • /
    • 1998
  • Precision metal mold casting process is a casting method manufacturing mechanical elements with high precision, having heavy/light alloys as casting materials and using permanent mold. To improve dimensional accuracy and the final mechanical properties of the castings, the solidification speed and the cooling rate of the casting should be controlled with the optimum mold cooling system, and moreover, to obtain more accurate control of the whole process interfacial heat transfer characteristic at the mold/casting interface must be studied in advance. In the present study, aluminum alloy casting system with metal mold equipped with electrical heating elements and water cooling system was designed and the temperature histories at points inside the metal mold were measured during the casting process. The heat transfer phenomena at the mold/casting interface was characterized by the heat flux between solidifying casting metal and metal mold, and the heat flux history was obtained using inverse heat conduction method. The effect of mold cooling condition upon the heat flux profile was examined, and the analysis shows that the heat flux value has its maximum at the beginning of the process.

  • PDF

Numerical Analysis of an Air-cooled Ammonia Condenser with Plate Fins

  • Kim, Young-Il;Kang, Byung-Ha
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제6권
    • /
    • pp.104-112
    • /
    • 1998
  • Ammonia has been used as refrigerant for more than 100 years in absorption as well as in compression systems. Due to its poisonous and inflammable properties, however, its use has been mainly on heavy industrial plants in which regular maintenance is available. For these systems, condensers are generally water∼cooled. This is suitable for large systems over 20RT but is not suitable for small systems. In order to apply ammonia for a small system, it is important to adopt an air-cooled condenser. In this study, simple numerical analysis of an air-cooled condenser for an ammonia refrigeration system has been carried out. The condenser is designed as horizontal tubes with plate fins attached at the outer surface to enhance the air-side heat transfer rate. Effect of fin shape and arrangement are studied in detail. Since the local heat transfer coefficient is highest at the leading edge, heat flux is highest at the edge and decreases along the distance. Conditions of inlet air are also varied in the study and condenser length that is required for full condensation is calculated. The results show that it is important to enhance both the air-side and internal heat transfer coefficients.

  • PDF

추력방향조종용 제트베인의 3차원 온도분포 해석 (An Analysis on 3-Dimensional Temperature Distribution of Jet Vanes for a Thrust Vector Control)

  • 황기영
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.283-291
    • /
    • 2011
  • 수직발사 추진기관의 추력방향조종(TVC)용으로 사용되는 제트베인 조립체의 열전달 특성을 고찰하기 위해 수치해석을 수행하였다. 본 연구에서 제트베인 주위의 대류열전달계수는 열경계층 방정식의 해와 반실험식을 사용하여 구하였다. 제트베인 조립체의 3차원 온도분포에 대한 해석은 PATRAN과 ABAQUS 소프트웨어를 사용하여 수행되었다. 본 수치해석 기법의 타당성은 제트베인 축 내부에서 측정한 온도와 열해석 결과의 비교를 통해 검증하였다. 제트베인의 3개 편향각(0o, 12.5o, 25o)에 대해 연소시간별 제트베인의 온도변화를 고찰하였다.

  • PDF

유속 센서의 실리콘 브리지 주위의 유동 및 열전달 수치해석에 관한 연구 (Theoretical study of flow and heat transfer around silicon bridge in a flow sensor)

  • 황호영;김호영;정진택
    • 대한기계학회논문집B
    • /
    • 제20권4호
    • /
    • pp.1376-1384
    • /
    • 1996
  • Measuring the velocity of fluid flow, semiconductor flow sensors are widely used in the various fields of engineering and science such as the semiconductor manufacturing processes and electronic control engines for automobiles. In the near future, this type of sensors will replace present hot wire type sensors or other type flow sensor due to its low price, easy handling and small size. To develop the advanced semiconductor flow sensor, it is necessary to obtain characteristics of the flow and the heat transfer around the sensor in advance. In the present study, the theoretical analysis including mathematical modeling and numerical calculation to predict the characteristics of heat transfer and flow field around the sensor was carried out. The main parameters for optimum design of the flow sensor are the free stream velocity, the heat generation rate of silicon arm and the distance between arms. Effects of these parameters on flow and heat transfer around the sensor and the temperature difference between arms are examined.

열전달 해석을 이용한 VAR 공정 변수가 티타늄 합금 잉고트 응고 조직에 미치는 영향 연구 (The Effects of VAR Processing Parameters on solidification Microstructures in Ti Alloys by Computer Simulation)

  • 김종환;이재현;허성강;현용택;이용태
    • 한국재료학회지
    • /
    • 제12권5호
    • /
    • pp.398-406
    • /
    • 2002
  • VAR process is required to control its various operating parameters. Heat transfer simulation has been accomplished to understand development of solidification micro and macro-structures during VAR process in Ti alloys. Optimum VAR process parameters could be also estimated in this study. It was found that macro-structures were closely related to the shape and depth of liquid pool, and solidification parameters, such as temperature gradient, heat flux, solid fraction. The cooling rates were higher at bottom, top, and center part respectively. As cooling rates increased, the $\alpha$ phase decreased in length, width and fraction. In order to evaluate which parameter affects the result of heat transfer calculation most sensitively, the sensitivities of input parameters to the simulation result were examined. The pool depth and cooling rate showed more sensitive to the temperature of the molten metal, heat transfer coefficient, and liquidus respectively. Also, these thermal properties became more sensitive at higher temperatures.

냉각과 소음을 고려한 엔진 차폐 구조의 간편한 설계 방법 (Simple Design Method of the Engine Enclosure Considering Cooling and Noise Reduction)

  • 최재웅;김관엽;이희준
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.184-188
    • /
    • 1999
  • Noise regulation of heavy construction machinery is getting stricter: 3 dB per every 4 year in European community. To meet this requirement many engineers have adopted the enclosing structures with thick absorbing materials and small opening, This increases internal temperature of the enclosure which have engine systems such as electric equipment that are vulnerable to heat, and engine block and muffler that can be regarded as heat sources. So noise control engineers have to consider a coupling problem: combining heat balance and noise reduction. This paper describes this approach by introducing simple heat transfer theory and SEA. The enclosing system of the loader whose enclosing structure consists of two rooms is investigated to show the validity of this method. The results represent that the simple heat transfer theory can be useful to estimate cooling performance when it is linked together by the back pressure theory in duct system. and the radiated noise can also be estimated by the SEA. Therefore a designer can use these approaches to define the opening ratio of an enclosure and the mass flow rate of air considering radiating noise.

  • PDF

핀-관 열교환기의 난방운전 시 공기측 열전달 및 마찰특성 (Air-side Heat Transfer and Friction Characteristics of Fined-tube Heat Exchangers under Heating Condition)

  • 권영철;장근선;고국원;김영재;박병권
    • 공업화학
    • /
    • 제17권5호
    • /
    • pp.476-482
    • /
    • 2006
  • 본 연구에서는 핀-관 열교환기의 공기측 열전달 및 마찰특성을 조사하기 위하여 8종의 열교환기에 대하여 난방조건에서 실험을 수행하였다. 핀-관 열교환기의 성능 비교평가를 위하여 공기엔탈피식 칼로리미터를 이용하였다. 실험에 사용된 핀은 슬릿, 루버, 평판형이며, 관경은 7.0 mm, 열수는 1, 2, 3열 그리고 4종의 관회로에 대해 j 계수와 마찰계수를 획득하였다. 실험을 통해서 핀형상, 핀피치, 열수 그리고 관회로의 변화에 대한 핀-관 열교환기의 공기측 열전달 및 마찰거동을 조사하였다. 실험결과는 관회로의 구성이 열교환기의 열전달과 마찰과 관련이 있음을 보여주었다. 동일 핀피치의 열교환기의 경우에 저 Re 수에서는 1열의 열전달성능이 우수하나 Re 수가 증가할수록 j 계수의 거동은 역전함을 보였다. 그리고 2열의 열교환기에서 핀종류에 따라 공기측 열전달성능과 마찰계수가 다르게 나타남을 확인하였다.

온실 스크린의 대류열전달계수 측정 (Measurement of Convective Heat Transfer Coefficients of Horizontal Thermal Screens under Natural Conditions)

  • 라피크아딜;나욱호;라쉬드아드난;김현태;이현우
    • 생물환경조절학회지
    • /
    • 제29권1호
    • /
    • pp.9-19
    • /
    • 2020
  • 대류열전달은 겨울철 온실 열손실의 중요한 원인이 되며, 일반적으로 복사열에 의한 손실보다 더 크다. 스크린의 대류열전달계수를 자연상태에서 측정한 연구가 수행된 바는 있지만 상하면의 재질이 동일하고 공극이 없는 스크린에 대해서는 적용을 할 수 없는 방법이다. 이러한 재질의 스크린은 한국에서 많이 사용되고 있으나 대류열전달 특성을 파악하는데 많은 어려움이 있는 실정이다. 본 연구에서는 공극이 없는 3가지 종류의 스크린에 대해 대류열전달계수를 구하였으며, 계수를 산정하기 위하여 복사열수지 이론에 근거하여 산정방법을 개발하였다. 실험장치에 스크린을 설치하고 일사량, 장파복사량, 대기온도, 스크린 및 흑색천의 표면온도, 풍속 등을 측정하였다. 스크린의 표면온도와 주변온도의 차이에 따른 대류열전달계수를 산정하였다. 풍속이 거의 없는 상태에서 온도의 차이가 증가함에 따라 계수는 감소하는 것으로 나타났다.

Performance Comparison of Liquid-Cooling with Air-Cooling Heat Exchangers Designed for Telecommunication Equipment

  • Jeon, Jong-Ug;Choi, Jong-Min;Heo, Jae-Hyeok;Kang, Hoon;Kim, Yong-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제16권2호
    • /
    • pp.64-69
    • /
    • 2008
  • Electronic and telecommunication industries are constantly striving towards miniaturization of electronic devices. Miniaturization of chips creates extra space on PCBs that can be populated with additional components, which decreases the heat transfer surface area and generates very high heat flux. Even though an air-cooling technology for telecommunication equipment has been developed in accordance with rapid growth in electrical industry, it is confronted with the limitation of cooling capacity due to the rapid increase of heat density. In this study, liquid-cooling heat exchangers were designed and tested by varying geometry and operating conditions. In addition, air-cooling heat exchangers were tested to provide performance data for the comparison with the liquid-cooling heat exchangers. The liquid-cooling heat exchangers had twelve rectangular channels with different flow paths of 1, 2, and 12. Silicon rubber heaters were used to control the heat load to the heat exchangers. Heat input ranged from 293 to 800W, and inlet temperatures of working fluid varied from 15 to $27^{\circ}C$. The heat transfer coefficients were strongly affected by flow conditions. All liquid-cooling heat exchangers showed higher cooling performance than the air-cooling heat exchanger. The heat exchanger with 2-paths could provide more controllability on the maximum temperature than the others.

On-site Performance Test and Simulation of a 10 RT Air Source Heat Pump

  • Baik, Young-Jin;Chang, Young-Soo;Kim, Young-Il
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제12권2호
    • /
    • pp.61-69
    • /
    • 2004
  • In this study, on-site performance test of an air source heat pump which has a rated capacity of 10 RT is carried out. Since indoor and outdoor air conditions can not be controlled to satisfy the standard test conditions, experiments are done with the inlet air conditions as they exist. To estimate the performance of the heat pump for other conditions, the heat pump is modeled with a small number of characteristic parameters. The values of the parameters are determined from the few measurements measured on-site during steady operation. A simulation program is developed to calculate cooling capacity and power consumption at any other arbitrary operating conditions. The simulation results are in good agreement with the experiment. This study provides a method of an on-site performance diagnosis of an air source heat pump.