• 제목/요약/키워드: Heat Tolerance

검색결과 235건 처리시간 0.026초

Transgenic Expression of MsHsp23 Confers Enhanced Tolerance to Abiotic Stresses in Tall Fescue

  • Lee, Ki-Won;Choi, Gi-Jun;Kim, Ki-Yong;Ji, Hee-Jung;Park, Hyung-Soo;Kim, Yong-Goo;Lee, Byung-Hyun;Lee, Sang-Hoon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권6호
    • /
    • pp.818-823
    • /
    • 2012
  • Tall fescue (Festuca arundinacea Schreb.) is an important cool season forage plant that is not well suited to extreme heat, salts, or heavy metals. To develop transgenic tall fescue plants with enhanced tolerance to abiotic stress, we introduced an alfalfa Hsp23 gene expression vector construct through Agrobacterium-mediated transformation. Integration and expression of the transgene were confirmed by polymerase chain reaction, northern blot, and western blot analyses. Under normal growth conditions, there was no significant difference in the growth of the transgenic plants and the non-transgenic controls. However, when exposed to various stresses such as salt or arsenic, transgenic plants showed a significantly lower accumulation of hydrogen peroxide and thiobarbituric acid reactive substances than control plants. The reduced accumulation of thiobarbituric acid reactive substances indicates that the transgenic plants possessed a more efficient reactive oxygen species-scavenging system. We speculate that the high levels of MsHsp23 proteins in the transgenic plants protect leaves from oxidative damage through chaperon and antioxidant activities. These results suggest that MsHsp23 confers abiotic stress tolerance in transgenic tall fescue and may be useful in developing stress tolerance in other crops.

산화 스트레스 대한 Saccharomyces cerevisiae KNU5377의 항산화 활성의 증가 (Increased Antioxidative Activities against Oxidative Stress in Saccharomyces cerevisiae KNU5377)

  • 김일섭;윤혜선;양지영;이오석;박희동;진익렬;윤호성
    • 생명과학회지
    • /
    • 제19권4호
    • /
    • pp.429-435
    • /
    • 2009
  • 산화적 스트레스는 정상적인 대사 과정뿐만 아니라 외부적인 환경에 노출 되었을 때 일어나는 것으로 잘 알려져 있다. 이러한 스트레스를 극복하기 위해 생물체들은 각자의 시스템에 맞게 다양한 항산화 시스템을 진화 발전시켜 왔다. Saccharomyces cerevisiae KNU5377 균주는 고온뿐만 아니라 다양한 스트레스에 대해 내성을 가짐을 확인하였다. 대부분의 스트레스는 궁극적으로는 산화적 스트레스로 귀결된다. 이러한 측면에서 본 연구는 KNU5377 균주가 어떠한 시스템에 의해서 다른 균주보다 스트레스 내성을 가지는지를 밝히기 위해 접근하였다. 수행된 연구결과에서 KNU5377 균주는 항산화 시스템과 밀접하게 관련된 단백질(superoxide dismutase, thioredoxin system, heat shock proteins)과 항산화 관련 물질(trehalose)을 과발현함을 확인하였다. 그러나 이러한 단백질들이 어떠한 조절 시스템에 의해서 균주 특이적인 발현 양상을 보이는지는 현재까지 확인되지 않고 있다. 본 연구는 KNU5377 균주 그 자체의 중요성과 함께 균주 내의 스트레스 내성과 관련된 유용한 유전자를 탐색하여 더욱 우수한 유전자원을 발굴하는데 기여 할 것으로 보인다.

Enhancement of the Chaperone Activity of Alkyl Hydroperoxide Reductase C from Pseudomonas aeruginosa PAO1 Resulting from a Point-Specific Mutation Confers Heat Tolerance in Escherichia coli

  • Lee, Jae Taek;Lee, Seung Sik;Mondal, Suvendu;Tripathi, Bhumi Nath;Kim, Siu;Lee, Keun Woo;Hong, Sung Hyun;Bai, Hyoung-Woo;Cho, Jae-Young;Chung, Byung Yeoup
    • Molecules and Cells
    • /
    • 제39권8호
    • /
    • pp.594-602
    • /
    • 2016
  • Alkyl hydroperoxide reductase subunit C from Pseudomonas aeruginosa PAO1 (PaAhpC) is a member of the 2-Cys peroxiredoxin family. Here, we examined the peroxidase and molecular chaperone functions of PaAhpC using a site-directed mutagenesis approach by substitution of Ser and Thr residues with Cys at positions 78 and 105 located between two catalytic cysteines. Substitution of Ser with Cys at position 78 enhanced the chaperone activity of the mutant (S78C-PaAhpC) by approximately 9-fold compared with that of the wild-type protein (WT-PaAhpC). This increased activity may have been associated with the proportionate increase in the high-molecular-weight (HMW) fraction and enhanced hydrophobicity of S78C-PaAhpC. Homology modeling revealed that mutation of $Ser^{78}$ to $Cys^{78}$ resulted in a more compact decameric structure than that observed in WT-PaAhpC and decreased the atomic distance between the two neighboring sulfur atoms of $Cys^{78}$ in the dimer-dimer interface of S78C-PaAhpC, which could be responsible for the enhanced hydrophobic interaction at the dimer-dimer interface. Furthermore, complementation assays showed that S78C-PaAhpC exhibited greatly improved the heat tolerance, resulting in enhanced1 survival under thermal stress. Thus, addition of Cys at position 78 in PaAhpC modulated the functional shifting of this protein from a peroxidase to a chaperone.

CFD를 이용한 피트의 지중열 모델 구축에 관한 연구 (A Geothermal Model of Pit Area Using Computational Fluid Dynamics)

  • 민준기;김정태
    • KIEAE Journal
    • /
    • 제8권5호
    • /
    • pp.11-16
    • /
    • 2008
  • This research has established CFD model on pit's cool-tube system through heat and air movement simulations, of which data was based on experimental and verification. This research work verified the effectiveness of the cool-tube system by analysing temperature, humidity and air current of the actually installed case. Also, we analysed heat transfer through air current simulation and the results are as followings. Firstly, we experiment on temperature, humidity and speed of air currents of the cool tube system with pit space during the month of May (spring). The average exterior temperature was $16.1^{\circ}C$, and $18.2^{\circ}C$ for the pit, $24.7^{\circ}C$ for the compressor room. Secondly, based on measured data of real case, we have analysed heat transfer through air current simulation and verified our proposed model. The actual measurement of average temperature of exhaust air of the pit's area is $19.7^{\circ}C$ with tolerance of $-0.33^{\circ}C{\sim}-0.6^{\circ}C$ compared to above simulations. Thirdly, having verified air current simulation model with formation of 260,000 and 1,000,000 cells, we could get reasonable near values with 260,000 cells. Lastly, the next step of research would be focused on proposing the best possible pit's cool-tube system after analysis of heat transfer of the air current simulation based on verified CFD model.

Rescue of Oxidative Stress by Molecular Chaperones in Yeast

  • Ueom Jeonghoon;Kang Sooim;Lee Kyunghee
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2002년도 추계학술대회
    • /
    • pp.76-78
    • /
    • 2002
  • Heat shock proteins (HSPs) are induced in most living cells by mild heat treatment, ethanol, heavy metal ions and hypoxia. In yeast Saccharomyces cerevisiae, mild heat pretreatment strongly induces Hsp104 and thus provide acquired thermotolerance. The ability of hsp104 deleted mutant $({\triangle}hsp104)$ to acquire tolerance to extreme temperature is severely impaired. In providing thermotolerance, two ATP binding domains are indispensible, as demonstrated in ClpA and ClpB proteases of E. coli. The mechanisms by which Hsp104 protects cells from severe heat stress are not yet completely elucidated. We have investigated regulation of mitochondrial metabolic pathways controlled by the functional Hsp104 protein using $^{13}C_NMR$ spectroscopy and observed that the turnover rate of TCA cycle was enhanced in the absence of Hsp104. Production of ROS, which are toxic to kill cells radiply via oxidative stress, was also examined by fluorescence assay. Mitochondrial dysfunction was manifested in increased ROS levels and higher sensitivity for oxidative stress in the absence of Hsp104 protein expressed. Finally, we have identified mitochondrial complex I and Ferritin as binding protein(s) of Hsp104 by yeast two hybrid experiment. Based on these observations, we suggest that Hsp104 protein functions as a protector of oxidative stress via either keeping mitochondrial integrity, direct binding to mitochonrial components or regulating metal-catalyzed redox chemistry.

  • PDF

질화포텐셜 제어 가스질화로 개발(II) : 제어시스템 및 하드웨어 (Development of Controlled Gas Nitriding Furnace(II) : Controlled Gas Nitriding System and its Hardware)

  • 이원범;이원범;문유진;김봉수
    • 열처리공학회지
    • /
    • 제36권2호
    • /
    • pp.86-95
    • /
    • 2023
  • This paper explained the equipment and process development to secure the source technology of controlled nitrification technology. The nitriding potential in the furnace was controlled only by adjusting the flow rate of ammonia gas introduced into the furnace. In addition, a control system was introduced to automate the nitriding process. The equipment's hardware was designed to enable controlled nitriding based on the conventional gas nitriding furnace, and an automation device was attached. As a result of measuring the temperature and quality uniformity for the equipment, the temperature and compound uniformity were ±1.2℃ and 14.3 ± 0.2 ㎛, respectively. And, it was confirmed that nitriding potential was controlled within the tolerance range of AMS2759-10B standard. In addition to parts for controlled nitriding, it was applied to products produced in existing conventional nitriding furnaces, and as a result, gas consumption was reduced by up to 80%.

내염성 cyanobacteria로 부터 danK heat shock protein 유전자의 cloning 및 특성 해명 (Cloning and Characterization of dnaK Heat Shock Protein Gene in a Halotolerant Cyanobacterium)

  • 원성혜;윤병욱;김학윤;;이병현
    • 생명과학회지
    • /
    • 제11권5호
    • /
    • pp.464-469
    • /
    • 2001
  • 내염성의 광합성 cyanobateria 인 Aphanothece halophytica로 부터 molecular chaperone으로 가능하는 HSP70 homolog인 dnaK2 유전자를 cloning 하였다. 이 danK2 유전자는 616개의 아미노산으로 구성되었으며 추정되는 분자량 68 kDa 의 단백질을 code하고 있었다. 아미노산 서열로부터 추정되는 DnaK2 단백질의 구조를 분석하여 본 결과, 다른 원핵생물의 DanK2 단백질들이 공통적으로 갖는 특성인 N-terminal ATPase domain과 C-terminal의 peptide-binding domain이 잘 보존되어 있었으며, 다른 HSP70/DanK 단백질들과의 높은은 상동성을 나타내었다. 한편 danK2 유전자는 생장온도인 28$^{\circ}C$에서 낮은 수준으로 구성적으로 발현하였으며 heat stress에 의해 그 발현량이 급격히 증가하였다. 또한 A. halophytica를 고농도의 염 스트레스로 처리한 결과, heat stress가 없음에도 불구하고 그 발현량이 급격히 증가하였다. 이러한 결과들은 DnaK 단백질의 고온 또는 염 스트레스에 따른 세포의 손상을 보호하기 위하여 중요한 기능을 담당하고 있기 때문에 추정된다.

  • PDF

Heat stress effects on the genetics of growth traits in Thai native chickens (Pradu Hang dum)

  • Wuttigrai Boonkum;Vibuntita Chankitisakul;Srinuan Kananit;Wootichai Kenchaiwong
    • Animal Bioscience
    • /
    • 제37권1호
    • /
    • pp.16-27
    • /
    • 2024
  • Objective: The objective of this study was to investigate the effect of heat stress on the growth traits and genetic parameters of Thai native chickens. Methods: A total of 16,487 records for growth traits of Thai native chickens between 2017 and 2022 were used in this study. Data included the body weight at birth, body weight at 4, 8, and 12 weeks of age (BW0, BW4, BW8, BW12), average daily gain during 0 to 4, 4 to 8, and 8 to 12 weeks of age (ADG0-4, ADG4-8, ADG8-12), absolute growth rate at birth, at 4, 8, and 12 weeks of age (AGR0, AGR4, AGR8, AGR12). The repeatability test day model used the reaction-norm procedure to analyze the threshold point of heat stress, rate of decline of growth traits, and genetic parameters. Results: At temperature and humidity index (THI) of 76, Thai native chickens began to lose their growth traits, which was the onset of heat stress in this study. The estimated heritability, genetic correlation between animal and heat stress effect, and correlations between the intercept and slope of the permanent environmental effects were 0.27, -0.85, and -0.83 for BW, 0.17, -0.81, and -0.95 for ADG, 0.25, -0.61, and -0.83 for AGR, respectively. Male chickens are more affected by heat stress than female chickens with a greater reduction of BW, ADG, and AGR, values equal to -9.30, -0.23, -15.21 (in males) and -6.04, -0.21, -10.10 (in females) gram per 1 level increase of THI from the THI of 76. Conclusion: The influence of thermal stress had a strong effect on the decline in growth traits and genetic parameters in Thai native chickens. This study indicated that genetic models used in conjunction with THI data are an effective method for the analysis and assessment of the effects of heat stress on the growth traits and genetics of native chickens.

The Major Developments of the Evolving Reverse Osmosis Membranes and Ultrafiltration Membranes

  • Kurihara, Masaru
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1991년도 추계 총회 및 학술발표회
    • /
    • pp.9-16
    • /
    • 1991
  • The current status of reverse osmosis and ultrafiltration membranes are reviewed with the view for the future. In the case of reverse osmosis (RO) membranes, as examples, new crosslinked aromatic polyamide membranes exhibited the superior separation performance with the sufficient water permeability, the high tolerance for oxidizing agents and chemicals. Ultrafiltration (UF) membrane based on poly(phenylene sulfide sulfone) (PPSS) also exibited the superior separation performance with the high solvent, heat and fouling resistance.

  • PDF