• Title/Summary/Keyword: Heat Recovery System

Search Result 456, Processing Time 0.023 seconds

Performance Analysis of Sensible and Latent Energy Recovery System for Thermally Controlled Facilities (향온시설물에 대한 현열 및 잠열 에너지 회수시스템의 성능해석)

  • 박병규;김무근;김근오
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.12
    • /
    • pp.1057-1065
    • /
    • 2000
  • A sizing of sensible and latent energy recovery system with condensing heat exchanger is important to the design of a thermally controlled facilities. The transient system simulation program TRNSYS 14.2/IISiBat has been used to evaluate the energy consumptions of a thermally controlled facilities which consist of boiler, chiller and condensing heat exchanger, The boiler and chiller are selected based on the annual peak loads and controlled to maintain the setting temperature of $14~17^{\circ}C$. Simulation shows that the amount of sensible and latent energy recovered by heat exchanger is almost 20% of total heating load.

  • PDF

A Preliminary Study on Direct Ethanol SOFC for Marine Applications

  • Bo Rim Ryu;To Thi Thu Ha;Hokeun Kang
    • Journal of Navigation and Port Research
    • /
    • v.48 no.2
    • /
    • pp.125-136
    • /
    • 2024
  • This research presents an innovative integrated ethanol solid oxide fuel cell (SOFC) system designed for applications in marine vessels. The system incorporates an exhaust gas heat recovery mechanism. The high-temperature exhaust gas produced by the SOFC is efficiently recovered through a sequential process involving a gas turbine (GT), a regenerative system, steam Rankine cycles, and a waste heat boiler (WHB). A comprehensive thermodynamic analysis of this integrated SOFC-GT-SRC-WHB system was performed. A simulation of this proposed system was conducted using Aspen Hysys V12.1, and a genetic algorithm was employed to optimize the system parameters. Thermodynamic equations based on the first and second laws of thermodynamics were utilized to assess the system's performance. Additionally, the exergy destruction within the crucial system components was examined. The system is projected to achieve an energy efficiency of 58.44% and an exergy efficiency of 29.43%. Notably, the integrated high-temperature exhaust gas recovery systems contribute significantly, generating 1129.1 kW, which accounts for 22.9% of the total power generated. Furthermore, the waste heat boiler was designed to produce 900.8 kg/h of superheated vapor at 170 ℃ and 405 kP a, serving various onboard ship purposes, such as heating fuel oil and accommodations for seafarers and equipment.

Performance Analysis of WHR-ORC Using Hydrocarbon Mixtures for 20kW Gross Power at Low Temperature

  • Kwakye-Boateng, Patricia;Yoon, Jung-In;Son, Chang-Hyo;Hui, Kueh Lee;Kim, Hyeon-Uk
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.140-145
    • /
    • 2014
  • Exploitation of renewable energies is on the increase to mitigate the reliance on fossil fuels and other natural gases with rocketing prices currently due to the depletion of their reserves not to mention their diverse consequences on the environment. Divergently, there are lots of industries "throwing" heat at higher temperatures as by products into the environment. This waste heat can be recovered through organic Rankine systems and converted to electrical energy with a waste heat recovery organic Rankine cycle system (WHR-ORC). This study uses the annual average condenser effluent from Namhae power plant as heat source and surface seawater as cooling source to analyze a waste heat recovery organic Rankine cycle using the Aspen HYSYS simulation software package. Hydrocarbon mixtures are employed as working fluid and varied in a ratio of 9:1. Results indicate that Pentane/Isobutane (90/10) mixture is the favorable working fluid for optimizing the waste heat recovery organic Rankine cycle at the set simulation conditions.

Thermal Energy Recovery from Waste Heat of an I.C. Engine for Agriculture(II) -System Simulation and Stability Test- (농용(農用) 내연기관(內燃機關) 폐열(廢熱)의 열(熱)에너지 회수(回收)(II) -시스템 Simulation과 안정성(安定性) 실험(實驗)-)

  • Suh, S.R.;Yoo, S.N.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.1
    • /
    • pp.6-13
    • /
    • 1987
  • A mathematical model for the waste heat recovery system for an engine was developed. The model based on the experimental data reported before was validated and was used to predict the waste heat recovery and recoverable heat of the engine at various operating conditions of the engine and the system. The model was also used to determine flow rates of the circulating water in the system for a certain temperature increment of the water at various operating conditions of the engine to give basic data to design the system. Stability of the system performance was tested on subjects of vapor lock problem, thermal characteristics of the thermostatic valve, and temperature variation of the circulating water in the engine and fuel consumption of the engine during each mode of the system operation and its change into the other. The test showed that the system operation was stable enough. Temperature profile in the thermal energy storage (TES) was observed during storing thermal energy, and thermal stratification in the TES was well formed acceptable to be used in the system. Finally a scheme to automatize the system was suggested.

  • PDF

A Study on Thermal Performance of the Heat Recovery Ventilator used Window (창호적용 배열회수 환기유닛의 열성능평가 연구)

  • Jang, Cheol-Yong;Cho, Soo;Sung, Uk-Joo;Lee, Jin-Sung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.129-134
    • /
    • 2008
  • Generally the window of the building is an objective of mining and having a distant view and also for a circulation it will can open and shut because becomes the structure insulation, the meat detailed drawing it does a very difficult portion, it is. And, recently the use of heat recovery ventilator has increased rapidly for improvement of air Quality and energy saving in building. But, the high efficient heat exchange will be more increasable than water vapors which were only occurred residential active. Purpose of this study is measurement of thermal performance about heat-recovery system integrated window. The result of the window thermal resistance is 1.80 $W/m^2K$ by KS F 2278. Air tightness is 5.96 m3/m2h at 4 Pa by KS F 2292.

  • PDF

Study on Performance Prediction and Energy Saving of Indirect Evaporative Cooling System (간접식 증발냉각장치의 성능예측과 에너지절약에 관한 연구)

  • Yoo, Seong Yeon;Kim, Tae Ho;Kim, Myung Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.743-749
    • /
    • 2015
  • The purpose of this study is to predict the performance of an indirect evaporative cooling system, and to evaluate its energy saving effect when applied to the exhaust heat recovery system of an air-handling unit. We derive the performance correlation of the indirect evaporative cooling system using a plastic heat exchanger based on experimental data obtained in various conditions. We predict the variations in the performance of the system for various return and outdoor air conditioning systems using the obtained correlation. We also analyze the energy saving of the system realized by the exhaust heat recovery using the typical meteorological data for several cities in Korea. The average utilization rate of the sensible cooling system for the exhaust heat recovery is 44.3% during summer, while that of the evaporative cooling system is 96.7%. The energy saving of the evaporative cooling system is much higher compared to the sensible cooling system, and was about 3.89 times the value obtained in Seoul.

Study on the Exhaust Heat Recovery Equipment in a Factory - On the Performance of a U-shape Multitube Heat Exchanger - (공장폐열(工場廢熱) 회수장치(回收裝置)에 관한 연구(硏究) -U자형(字型) 다관식(多管式) 열교환기(熱交換機)의 성능(性能)에 관하여-)

  • Kim, Yung Bok;Song, Hyun Kap
    • Journal of Biosystems Engineering
    • /
    • v.8 no.2
    • /
    • pp.49-61
    • /
    • 1983
  • U shape multitube heat exchanger was equipped in the flue to recover the exhaust heat from the boiler system. The fluids of the exhaust heat recovery equipment were the flue gas as the hot fluid, and the water as the cold fluid. The flow geometry of the fluids was cross flow - two pass, the hot fluid being mixed and the cold fluid unmixed. The results of the theoretical and the experimental analysis and the economic evaluation are summarized as follows. 1) The heat exchanger effectiveness and the temperature efficiency of the hot fluid were about 35% when the fuel consumption rate was 140 - 150 L/15min. The temperature efficiency for the cold fluid ranged from 3.0% to 4.5%. The insulation efficiency ranged from 85% to 98%, which was better than the KS air preheater insulation efficiency of 90%. 2) The relationship between the fuel consumption rate, F, and the outlet temperature, $T_{h2}$, of the flue gas from the heat exchanger was $T_{h2}$ = 0.927F + 110. In order to prevent the low temperature corrosion from the coagulation of $SO_3$, it is necessary to maintain the fuel consumption rate above 82 L/15min. 3) The ratio of the exhaust heat from the boiler system to the total energy consumption was about 14.5%. With the installation of the exhaust heat recovery equipment, the energy recovery ratio to the exhaust heat was about 25%. Accordingly, about 3.6% of the total fuel consumption was estimated to be saved. 4) Economic analysis indicated that the installation of the exhaust heat recovery equipment was feasible to save the energy, because the capital reocvery period was only 10 months when the fuel consumption rate was 80 L/15min. 4 months when it was 160 L/15min. 5) Based on the theoretical and the experimental analysis, it was estimated to save the energy of about 18 million Won per year, if four heat exchangers are installed in a factory. 6) A further study is recommended to identify the relationship among the flow rate of the exhaust gas, the size of the heat exchanger and the capacity of the air preheater. For a maximum heat recovery from the exhaust gas an automatic control system is required to control the flow rate of the cold fluid depending on the boiler load.

  • PDF

Feasibility Study on Thermal Power Plant Condenser Heat Recovery for District Heating and Fuel Line Preheating (발전소 복수기 배열회수의 지역난방 및 연료라인 예열용 활용타당성 검토)

  • Jung, Hoon;Hwang, Gwang-Won
    • New & Renewable Energy
    • /
    • v.5 no.3
    • /
    • pp.40-48
    • /
    • 2009
  • Recovered heat has been considered as a renewable energy in Europe since 2008 because its great effect on energy saving and carbon decreasing in plant process. Energy saving and decreasing green gas are critical issue today, so various technologies to save energy and decrease carbon dioxide in plant process have been applied to many industrial area. In this paper, the feasibility of condenser heat recovery by heat pump in power plant for district heating and fuel line preheating were reviewed by verifying energy (heat) balance and mass balance of power plant model. Some ways to compose proper system to recover heat of condenser are suggested and their possibilities are also reviewed. Limitations on heat recovery in power plant are also reviewed. The results are verified by calculating input/output energy based on actual performance test data of Taean Thermal Power Plant in Korea. There is noticeable improvement of plant performance in some cases which demand low temperature (<100 C) heat like distrcit heating, fuel line heating, and so forth.

  • PDF

Mechanical Properties of Heat Exchanger Element with Higher Capacity Waste Heat Recovery PDC Clean Ventilation System (대용량 폐열회수 PDC청정 환기시스템용 열교환 소자의 기계적 특성)

  • Ahn, S.H.;Nam, K.W.;Ahn, B.H.;Kim, D.G.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.67-75
    • /
    • 2009
  • Recently, the higher capacity waste heat recovery PDC clean ventilation system has a tendency which is increasing due to the excellent energy reduction in factory, big building, and so on. This system was developed to complement the room environment which is deteriorated. However, the researches and technologies about this system were not well studied. Specially, the characteristic for heat exchanger element used to this system were not well known. Therefore, this study was carried out to evaluate the mechanical properties of the heat exchanger element as the core parts compose of this system. From results, tensile strength and elongation of the plate type heat exchanger element had about 10.11~14.32 kgf/$mm^2$ and 8.0~16.2%, respectively.

  • PDF

Effect of Fast ATF Warm-up on Fuel Economy Using Recovery of EGR Gas Waste Heat in a Diesel Engine (EGR 가스 폐열회수에 의한 디젤엔진의 연비에 미치는 ATF 워밍업의 영향)

  • Heo, Hyung-Seok;Lee, Dong-Hyuk;Kang, Tae-Gu;Lee, Heon-Kyun;Kim, Tae-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.25-32
    • /
    • 2012
  • Cold start driving cycles exhibit an increases in friction losses due to the low temperatures of metal components and media compared to the normal operating engine conditions. These friction losses are adversely affected to fuel economy. Therefore, in recent years, various techniques for the improvement of fuel economy at cold start driving cycles have been introduced. The main techniques are the upward control of coolant temperature and the fast warm-up techniques. In particular, the fast warm-up techniques are implemented with the coolant flow-controlled water pump and the WHRS (waste heat recovery system). This paper deals with an effect of fast ATF (automatic transmission fluid) warm-up on fuel economy using a recovery system of EGR gas waste heat in a diesel engine. On a conventional diesel engine, two ATF coolers have been connected in series, i.e., an air-cooled ATF cooler is placed in front of the condenser of air conditioning system and a water-cooled one is embedded into the radiator header. However, the new system consists of only a water-cooled heat exchanger that has been changed into the integrated structure with an EGR cooler to have the engine coolant directly from the EGR cooler. The ATF cooler becomes the ATF warmer and cooler, i.e., it plays a role of an ATF warmer if the temperature of ATF is lower than that of coolant, and plays a role of an ATF cooler otherwise. Chassis dynamometer experiments demonstrated the fuel economy improvement of over 2.5% with rapid increase in the ATF temperature.