• 제목/요약/키워드: Heat Output

검색결과 545건 처리시간 0.041초

엔진 배기열 이용 유기랭킨사이클에 대한 실험적 연구 (Experimental Research on an Organic Rankine Cycle Using Engine Exhaust Gas)

  • 신동길
    • 에너지공학
    • /
    • 제21권4호
    • /
    • pp.393-397
    • /
    • 2012
  • 본 연구에서는 산업용 가스 엔진의 배기 폐열을 회수하여 발전하는 유기랭킨사이클을 구성하고 시스템 성능 분석 실험을 수행하였다. 엔진 배기가스 열을 작동유체(냉매 R134a)에 흡수시키기 위해 Shell & Tube 방식 열교환기를 엔진 배기 매니폴드 후단에 장착하였다. 엔진출력 60 kW인 조건에서 약 63 kW의 배기가스 열을 배출하였으며, 열교환기를 통해 작동유체에 흡수된 열량은 43~46 kW로서 배기가스 열회수율은 68~73%, 최대출력은 4.6 kW로서 배기가스 열량에 대한 최대출력의 비는 7.3%을 나타내었다.

열기관의 최대출력 사이클 (Maximum Power Output Cycle of Heat Engines)

  • 김수연;정평석;노승탁;김효경
    • 대한기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.694-701
    • /
    • 1990
  • 본 연구에서는 열기관의 출력이, 주어진 열원사이에서 구성되는 사이클의 형 태에 의존한다는 점에서 최대출력 사이클이 어떤 형태가 될 것인가하는 문제에 촛점을 맞추어 사이클을 해석하고, 최대출력을 구하고자 한다.

원자력발전소 기기냉각수계통의 판형열교환기 적용성 (Applicability of Plate Heat Exchanger to Plant Cooling Water Systems in Pressure Water Reactor)

  • 임혁순
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.505-510
    • /
    • 2001
  • Advanced Pressurized Reactor 1400(APR1400), which is a standard evolutionary advanced light water reactor(ALWR), has been developed from 1992 as one of long-term Government Project(G-7). The APR-1400 is designed to operate at the rated output of 4000MWt to produce an electric power output of around 1450MWe. Due to the increased electric power, In Nuclear Power plant huge quantities of heat are generated in the thermo-dynamic process used for producing electrical energy. So, There is considerationly additional cooling, Heat transfer area and increased cooling water of Heat Exchanger which take care of the different smaller cooling duties within the nuclear power plant. We review applying to PRE instead of Shell-and-Tube Heat exchanger. In this paper, we describe the major design features of PRE, Comparison between a PHE and a Shell-and-Tube Heat Exchanger, and then Applicability of Plate Heat Exchanger in Nuclear Power Plant Component Cooling water systems.

  • PDF

Efficiency Improvement of an Automotive Alternator by Heat Treatment

  • Kim, Ji-Hyun;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • 제20권2호
    • /
    • pp.155-160
    • /
    • 2015
  • Recently, $CO_2$ emission standards and fuel efficiency legislation has been tightened globally. Therefore automotive alternator performance becomes increasingly important to meet the requirements. Many proposed methods have suggested adding magnets or regulation control to increase alternator efficiency and output. However, this creates a significant additional cost. During the stator lamination process, the magnetic property of the stator deteriorates mainly due to stamping and slinky process for an alternator. To maximize the alternator performance, heat treatment of the stator core was performed and magnetic properties were compared to find the optimal condition. Finally, alternator output and efficiency test were performed resulting in significant output and efficiency improvement up to 6.8% and 0.6% respectively.

2단 응축 히트펌프 온수시스템의 사이클 해석 및 성능분석 (Performance of Heat Pump Water Heater with Dual Condenser)

  • 유영선;김영중;강금춘;백이;윤진하;강연구;이형모
    • Journal of Biosystems Engineering
    • /
    • 제31권5호
    • /
    • pp.423-429
    • /
    • 2006
  • The heat pump water heater developed in this research consisted of one evaporator, one compressor, 1st condenser, 2nd condenser, one expansion valve, one water tank, one recirculation circuit and etc. The performance of heat pump water heater was tested and analyzed. The quantities of output water changed linearly from 2380 to $660{\ell}/h$, and the output water temperature changed curvedly from 29.9 to $44.5^{\circ}C$ when the opening rate of recirculation valve changed from 0 to 100%. The COP of heat pump water heater increased from 3.0 to 3.8 when the quantities of output water changed from 660 to $2380{\ell}/h$. When the temperature distributions of water tank were measured during 50 minutes after turning on the heat pump, the temperature stratification by the level appeared apparently. When the inlet water temperature changed from 30 to$50^{\circ}C$, the output energy of heat pump hardly changed. The surface area of double pipe heat exchanger changed from 0.429 to $6.254m^2$ when the compressor capacity increased from 1.0 to 50.0 PS.

좁은 공간 내의 밀폐형 장치 냉각시스템에 대한 열평형 평가 (Evaluation of Heat Balance for Cooling System of an Armored Installation in Small Space)

  • 김성광;안석환;남기우
    • 한국해양공학회지
    • /
    • 제21권3호
    • /
    • pp.1-7
    • /
    • 2007
  • In this study, the heat balance test of an engine was conducted, and the heat released to coolant is measured and corrected using a power adjustment factor for high fuel temperature to simulate heat rejection of the engine. An engine-converter matching simulation program which can compute the engine speed, transmission output speed, transmission input and output power is developed from the vehicle, transmission and engine performance curve. With this information and the engine heat rejection characteristics, the engine and transmission heat rejection rates can be determined at given condition. In analyzing the air mass flow, a sub program computing the air mass flow rate from the equation of the pressure balance between cooling fan static pressure rise and pressure losses of cooling components is developed.

표면온도 측정에 의한 아크용접공정의 부최적제어 (Suboptimal control of arc welding process using surface temperature measurement)

  • 부광석;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.322-326
    • /
    • 1989
  • This paper describes design procedure of suboptimal control to minimize a performance index which is represented as sum of square output error and the heat input power in arc welding process. Heat input and temperature of a fixed point on the surface of the material are concerned as input and output of the process, repectively. The suboptimal control law considered here in is a proportional plus integral type and is implemented by using only the output variables available from sensor which is also optimally located in a fixed point w.r.t. a moving weld touch.

  • PDF

열전달을 고려한 냉동 사이클의 최적 설계조건 (Optimal Design Condition of Refrigeration Cycle with Heat Transfer Processes)

  • 김수연;정평석
    • 대한기계학회논문집
    • /
    • 제14권1호
    • /
    • pp.225-229
    • /
    • 1990
  • 본 연구에서는 외부조건과 입력이 일정하게 주어져 있는 냉동 사이클에 대하 여 열교환기의 용량을 설계변수로 하여 출력과 효율이 최대가 되는 조건, 즉 최적 설 계조건을 살펴 보고자 한다. 아울러 이 조건과 엔트로피 생성 최소조건과의 관계와 비가역 사이클인 경우도 살펴보았다.

자동차 배기가스 폐열 회수용 팽창기 개념설계 (Conceptual design of an expander for waste heat recovery of an automobile exhaust gas)

  • 김현재;김유찬;김현진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.237-242
    • /
    • 2009
  • A steam Rankine cycle was considered to recover waste heat from the exhaust gas of an automobile. Conceptual design of a swash plate type expander was practiced to convert steam heat to shaft power. With the steam pressure and temperature of 35 bar and $300^{\circ}C$ at the expander inlet, respectively, the expander was estimated to produce the shaft power output of about 1.93 kW from the exhaust gas waste heat of 20 kW. The expander output increased linearly accordingly to the amount of exhaust gas waste heat in the range of from 10-40 kW, and the Rankine cycle efficiency was more or less constant at about 9.6% regardless of the waste heat amount.

  • PDF

BEPAT: A platform for building energy assessment in energy smart homes and design optimization

  • Kamel, Ehsan;Memari, Ali M.
    • Advances in Energy Research
    • /
    • 제5권4호
    • /
    • pp.321-339
    • /
    • 2017
  • Energy simulation tools can provide information on the amount of heat transfer through building envelope components, which are considered the main sources of heat loss in buildings. Therefore, it is important to improve the quality of outputs from energy simulation tools and also the process of obtaining them. In this paper, a new Building Energy Performance Assessment Tool (BEPAT) is introduced, which provides users with granular data related to heat transfer through every single wall, window, door, roof, and floor in a building and automatically saves all the related data in text files. This information can be used to identify the envelope components for thermal improvement through energy retrofit or during the design phase. The generated data can also be adopted in the design of energy smart homes, building design tools, and energy retrofit tools as a supplementary dataset. BEPAT is developed by modifying EnergyPlus source code as the energy simulation engine using C++, which only requires Input Data File (IDF) and weather file to perform the energy simulation and automatically provide detailed output. To validate the BEPAT results, a computer model is developed in Revit for use in BEPAT. Validating BEPAT's output with EnergyPlus "advanced output" shows a difference of less than 2% and thus establishing the capability of this tool to facilitate the provision of detailed output on the quantity of heat transfer through walls, fenestrations, roofs, and floors.