• Title/Summary/Keyword: Heat Loss

Search Result 2,112, Processing Time 0.03 seconds

EVALUATION OF HEAT-FLUX DISTRIBUTION AT THE INNER AND OUTER REACTOR VESSEL WALLS UNDER THE IN-VESSEL RETENTION THROUGH EXTERNAL REACTOR VESSEL COOLING CONDITION

  • JUNG, JAEHOON;AN, SANG MO;HA, KWANG SOON;KIM, HWAN YEOL
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.66-73
    • /
    • 2015
  • Background: A numerical simulation was carried out to investigate the difference between internal and external heat-flux distributions at the reactor vessel wall under in-vessel retention through external reactor vessel cooling (IVR-ERVC). Methods: Total loss of feed water, station blackout, and large break loss of coolant accidents were selected as the severe accident scenarios, and a transient analysis using the element-birth-and-death technique was conducted to reflect the vessel erosion (vessel wall thickness change) effect. Results: It was found that the maximum heat flux at the focusing region was decreased at least 10% when considering the two-dimensional heat conduction at the reactor vessel wall. Conclusion: The results show that a higher thermal margin for the IVR-ERVC strategy can be achieved in the focusing region. In addition, sensitivity studies revealed that the heat flux and reactor vessel thickness are dominantly affected by the molten corium pool formation according to the accident scenario.

Analysis on the Effects of the Heat Loss Coefficient on the Operation Time of Sprinkler in Compartment Fire (구획 화재에서 스프링클러 열 손실계수 변화에 따른 작동 시간 분석)

  • You, Woo Jun
    • Fire Science and Engineering
    • /
    • v.32 no.5
    • /
    • pp.34-39
    • /
    • 2018
  • In this study, the experiment conditions for the variation of heat release rate in compartment space were constructed to analyze the effects of fire spread and the operation time of sprinkler in accordance with the heat loss of the sprinkler's heat element. The compartment composed of fire board (width = 0.3 m, height = 0.5 m, length = 3.0 m), are manufactured to measure the temperature distributions in the inner space, the mass loss rate and heat release rate during the experiment of N-heptane pool fire test. Also, the operation time of sprinkler is analyzed with the installation of sprinkler and C-factor using Fire Dynamics Simulator Ver.6 under the experiment conditions. The results show that the operation time of sprinkler, which has RTI $100(m{\cdot}s)^{0.5}$ operating temperature $70^{\circ}C$, is 30 s~60 s for C-factor = 0 and 1, 62 s~92 s for C-factor = 3, and 120 s over for C-factor = 5, respectively.

Analysis of Heat Loss with Mirror Array and Receiver Shapes on the Dish Solar Collector (반사경 배치 및 흡수기 형상에 따른 접시형 태양열 집열기의 열손실 해석)

  • Seo, Joo-Hyun;Ma, Dae-Sung;Kim, Yong;Kang, Yong-Heack;Seo, Tae-Beom
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 2008
  • The radiative heat loss from a receiver of a dish solar collector is numerically investigated. The dish solar collector considered in this paper consists of a receiver and multi-faceted mirrors. In order to investigate the performance comparison of dish solar collectors, six different mirror arrays and four different receivers are considered. A parabolic- shaped perfect mirror of which diameter is 1.40 m is considered as the reference for the mirror arrays. The other mirror arrays which consist of twelve identical parabolic-shaped mirror facets of which diameter are 0.405 m are suggested for comparison. Their reflecting areas, which are 1.545 $m^{2}$, are the same. Four different receiver shapes are a conical, a dome, a cylindrical, and a unicorn type. The radiative properties of the mirror surfaces and the receiver surfaces may vary the thermal performance of the dish solar collector so that various surface properties are considered. In order to calculate the radiative heat loss in the receiver, two kinds of methods are used. The Net Radiation Method that is based on the radiation heat balance on the surface is used to calculate the radiation heat transfer rate from the inside surface of the receiver to the environment. The Monte-Carlo Method that is the statistical approach is adopted to predict the radiation heat transfer rate from the reflector to the receiver. The collector efficiency is defined as the results of the optical efficiency and the receiver efficiency. Based on the calculation, the unicorn type has the best performance in receiver shapes and the STAR has the best performance in mirror arrays except the perfect mirror.

A study on the radiative heat transfer analysis in a laminar diffusion flame (층류확산화염의 출사열전달 해석에 관한 연구)

  • 이도형;최병륜
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.48-55
    • /
    • 1989
  • The purpose of present study is to evaluate both the radiative heat loss from a flame and the local formation and oxidation rate of soot. The present paper describes a comprehensive mathematical model to deal with combustion and radiative heat transfer simultaneously. The involved radiative heat transfer model was based on the "heat ray tracing method" originally proposed by Hayasaka et al.. Some predicted results were compared with the experiments.periments.

  • PDF

Sensitivity Analyses for Maximum Heat Removal from Debris in the Lower Head

  • Kim, Yong-Hoon;Kune Y. Suh
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.395-409
    • /
    • 2000
  • Parametric studies were performed to assess the sensitivity in determining the maximum in-vessel heat removal capability from the core material relocated into the lower plenum of the reactor pressure vessel (RPV)during a core melt accident. A fraction of the sensible heat can be removed during the molten jet delivery from the core to the lower plenum, while the remaining sensible heat and the decay heat can be transported by rather complex mechanisms of the counter-current flow limitation (CCFL) and the critical heat flux (CHF)through the irregular, hemispherical gap that may be formed between the freezing oxidic debris and the overheated metallic RPV wall. It is shown that under the pressurized condition of 10MPa with the sensible heat loss being 50% for the reactors considered in this study, i.e. TMI-2, KORI-2 like, YGN-3&4 like and KNGR like reactors, the heat removal through the gap cooling mechanism was capable of ensuring the RPV integrity as much as 30% to 40% of the total core mass was relocated to the lower plenum. The sensitivity analysis indicated that the cooling rate of debris coupled with the sensible heat loss was a significant factor The newly proposed heat removal capability map (HRCM) clearly displays the critical factors in estimating the maximum heat removal from the debris in the lower plenum. This map can be used as a first-principle engineering tool to assess the RPV thermal integrity during a core melt accident. The predictive model also provided ith a reasonable explanation for the non-failure of the test vessel in the LAVA experiments performed at the Korea Atomic Energy Research Institute (KAERI), which apparently indicated a cooling effect of water ingression through the debris-to-vessel gap and the intra-debris pores and crevices.

  • PDF

A Study on the Performance of Paper Heat Exchanger for Exhaust Heat Recovery (배기열 회수용 종이 열교환기의 성능에 관한 연구)

  • Yoo, Seong-Yeon;Chung, Min-Ho;Choi, Jae-Ho;Kwon, Hwa-Kil;Lee, Chun-Woo;Lee, Ki-Seong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.245-250
    • /
    • 2003
  • In order to control indoor air quality and save energy, it is needed to install a suitable ventilation system equipped with heat exchanger for heat recovery. The purpose of this research is to find the performance of paper heat exchanger for exhaust heat recovery, which exchanges latent heat as well as sensible heat. Experimental apparatus comprises heat exchanger model, constant temperature and humidity chamber, fan and measurement systems for temperature, pressure and flow rate. Thermal performance and pressure loss of the paper heat exchanger are measured and compared at various air velocities and outdoor conditions. Experimental results show that paper heat exchanger can recover $50{\sim}70%$ of the enthalpy difference between supply and exhaust air.

  • PDF

A Study on the Performance Analysis of the PAO-AIR Heat Exchangers in an Aircraft (항공기용 PAO-공기 열교환기 성능분석 연구)

  • Park, Dong-Myung;Joung, Yong-In;Moon, Woo-Yong;Park, Sung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.934-939
    • /
    • 2012
  • In this study, the performance validation of a PAO-AIR heat exchanger developed for the ECS(Environmental Control System) of a UAV(Unmanned Aerial Vehicle) has been carried out. The performance goals of a PAO-AIR heat exchanger were established by the system schematic analysis. And a heat exchanger to be met the ECS performance was developed by a detailed design and a precision manufacture. Using the developed heat exchanger, the experiment about pressure loss and effectiveness, overall heat transfer coefficient to prove the developed PAO-AIR heat exchanger performance in various conditions as well as a design point of heat exchanger was performed and the experimental results were analyzed. As the experimental results, the performance and characteristic of a PAO-AIR heat exchanger developed for the ECS of a UAV were analyzed and the development suitability was proved.

Wear Characteristics According of Heat Treatment of Si3N4 with Different Amounts of SiO2 Nano-Colloid (SiO2 나노 콜로이드 량이 다른 Si3N4의 열처리에 따른 마모 특성)

  • Ahn, Seok Hwan;Nam, Ki Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1117-1123
    • /
    • 2014
  • This study sintered $Si_3N_4$ with different amounts of $SiO_2$ nano-colloid. The surface of a mirror-polished specimen was coated with $SiO_2$ nano-colloid, and cracks were healed when the specimen was treated at a temperature of 1273 K for 1 h in air. Wear specimen experiments were conducted after heat treatments for 10 min at 1073, 1273, and 1573 K. The heat-treated surface that was coated with the $SiO_2$ nano-colloid was slightly rougher than the noncoated surface. The oxidation state of the surface according to the heat treatment temperature showed no correlation with the surface roughness. Moreover, the friction coefficient, wear loss, and bending strength were not related to the surface roughness. $Si_3N_4$ exhibited an abrasive wear behavior when SKD11 was used as an opponent material. The friction coefficient was proportional to the wear loss, and the bending strength was inversely proportional to the friction coefficient and wear loss. The friction coefficient and wear loss increased with increasing amounts of the $SiO_2$ nanocolloid. In addition, the friction coefficient was slightly increased by increasing the heat treatment temperature.

Design Considerations on the Standby Cooling System for the integrity of the CNS-IPA

  • Choi, Jungwoon;Kim, Young-ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.104-104
    • /
    • 2015
  • Due to the demand of the cold neutron flux in the neutron science and beam utilization technology, the cold neutron source (CNS) has been constructed and operating in the nuclear research reactor all over the world. The majority of the heat load removal scheme in the CNS is two-phase thermosiphon using the liquid hydrogen as a moderator. The CNS moderates thermal neutrons through a cryogenic moderator, liquid hydrogen, into cold neutrons with the generation of the nuclear heat load. The liquid hydrogen in a moderator cell is evaporated for the removal of the generated heat load from the neutron moderation and flows upward into a heat exchanger, where the hydrogen gas is liquefied by the cryogenic helium gas supplied from a helium refrigeration system. The liquefied hydrogen flows down to the moderator cell. To keep the required liquid hydrogen stable in the moderator cell, the CNS consists of an in-pool assembly (IPA) connected with the hydrogen system to handle the required hydrogen gas, the vacuum system to create the thermal insulation, and the helium refrigeration system to provide the cooling capacity. If one of systems is running out of order, the operating research reactor shall be tripped because the integrity of the CNS-IPA is not secured under the full power operation of the reactor. To prevent unscheduled reactor shutdown during a long time because the research reactor has been operating with the multi-purposes, the introduction of the standby cooling system (STS) can be a solution. In this presentation, the design considerations are considered how to design the STS satisfied with the following objectives: (a) to keep the moderator cell less than 350 K during the full power operation of the reactor under loss of the vacuum, loss of the cooling power, loss of common electrical power, or loss of instrument air cases; (b) to circulate smoothly helium gas in the STS circulation loop; (c) to re-start-up the reactor within 1 hour after its trip to avoid the Xenon build-up because more than certain concentration of Xenon makes that the reactor cannot start-up again; (d) to minimize the possibility of the hydrogen-oxygen reaction in the hydrogen boundary.

  • PDF

Edge-flame Instability in A Low Strain-rate Counterflow Diffusion Flame (저신장율 대향류확산화염에서 에지화염 진동불안정성)

  • Park, June-Sung;Kim, Hyun-Pyo;Park, Jeong;Kim, Song-Cho;Kim, Jeong-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.295-298
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate. It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation. Edge flame oscillations in low strain rate flames are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames.

  • PDF