• Title/Summary/Keyword: Heat Loss

Search Result 2,102, Processing Time 0.037 seconds

The Effect of Treponema Denticola and Treponema Lecithinolyticum on Periodontal Ligament Cells (Treponema Denticola와 Treponema Lecithinolyticum이 치주인대세포에 미치는 영향)

  • Jung, Jung-Hag;Choi, Bong-Kyu;Moon, Ik-Sang;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.2
    • /
    • pp.311-326
    • /
    • 1999
  • This study was investigated to observe the effect of Treponema denticola(TDC) and Treponema lecithinolyticum(TLC) on cultured human periodontal ligament cells. Several experiments were performed including MTT test for the inhibition effect of cell proliferation, LDH test for the cytotoxicity , gelatin zymography for the gelatinase activation and observation of cell morphology change using the phase-contrast microscopy. The results were as follows. 1. The effect of concentration on cell proliferation with time showed an inhibitory effect at high concentration $(150{\mu}g/well)$ for TLC and at low concentration( $9.4{\mu}gwell$ ) for TDC. 2. The effect of time on cell proliferation with concentration showed an inhibitory effect at $150{\mu}g/well$ on 2-day incubation for TLC and at $9.4{\mu}g/well$ on 2-day incubation for TDC. 3. The effect of heat-treated TDC and TLC on the inhibition of cell proliferation showed the difference in the heat-treated group compared to the non-heat treated group for TDC, whereas no difference was found for TLC. 4. The morphological changes which were observed from the phase-contrast microscopy showed the difference in the test group compared to the control group. The loss of spindle-like appearance, cell-to-cell detachment and inhibition of cell proliferation were observed. 5. There was no difference of the cytotoxicity effect between the test group and the control group in the LDH test. 6. The active form of progelatinase A with molecular weight 72kDa was activated in both TDC and TLC on the gelatin zymography. Regarding to the above results, TDC and TLC have an effect on periodontal ligament cells by playing an inhibitory role in cell proliferation and appears to activate progelatinase A which degrades type IV collagen.

  • PDF

Effect of Heat-Moisture Treatment of Domestic Rice Flours Containing Different Amylose Contents on Rice Noodle Quality (아밀로오스 함량이 다른 국내산 쌀가루의 수분-열처리가 쌀국수 품질에 미치는 영향)

  • Seo, Hye-In;Ryu, Bog-Mi;Kim, Chang-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.11
    • /
    • pp.1597-1603
    • /
    • 2011
  • The influence of heat-moisture treatment (HMT) and substitution of rice flour containing different amylose contents on the quality characteristics of rice noodles was investigated. HMT was applied to rice flours with 21% moisture content at 100 and 105$^{\circ}C$ for 30 min. Three rice cultivars were used, including high amylose of Goami (GM) and intermediate amylose of Choochung (CC) as domestic rice flours and imported rice of Taeguk (TG) as a control. HMT and substitution of rice flour with different amylose contents affected the cooking and texture quality of rice noodles. When rice noodles were made of intermediate amylose rice flour with HMT, cooking properties improved with decreased cooking loss and cooking water turbidity and thus were closer to those of control. Especially, the hardness, adhesiveness, tensile strength, and darkness of rice noodles notably increased when HMT rice flour was used. Based on the results of quantitative descriptive analysis for selected rice noodles, the noodles made of HMT CC at 105$^{\circ}C$ (CC105) had high scores for resilience and adhesiveness and low scores for hardness compared with imported commercial rice noodles and other experimental noodles such as TG, HMT GM100, TG+CC, and TG+CC105. In conclusion, rice noodles were made of composite flours containing high amylose and intermediate amylose contents or HMT intermediate amylose content rice flour.

Soil Surface Energy Balance and Soil Temperature in Potato Field Mulched with Recycled-Paper and Black Plastic Film (감자밭의 재생종이 및 흑색 플라스틱 필름 멀칭에 따른 지표면 에너지 수지와 토양온도의 변화)

  • 최일선;이변우
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.3
    • /
    • pp.229-235
    • /
    • 2001
  • The thermal and photometric properties of mulching materials modify the radiation and energy balance on the mulched soil surface and thereby change the soil temperature. The soil surface energy balances and soil temperatures under the mulching treatments of non-mulched control, recycled paper (RPM), and black polyethylene film (BPFM) were compared before and after the establishment of potato canopy. On August 30 in 1998 when potato was not emerged yet and solar radiation was 17.9 MJ $m^{-2}$${day}^{-1}$ , the net radiation of the soil surface was estimated as 10.(1, 2. 4, and 1.3 MJ $m^{-2}$${day}^{-1}$ under the control, BPFM, and RPM, respectively. The sensible and latent heat loss from the soil surface was 9.65 MJ $m^{-2}$${day}^{-1}$ in the control, most of the net radiation being lost through evaporation and convection, whereas it amounted only to 1.39 MJ $m^{-2}$${day}^{-1}$ in BPFM and 1.36 MJ $m^{-2}$${day}^{-1}$ in RPM. Therefore, the soil heat fluxes were 0.36 1.02, and 0.06 MJ m$^{-2}$ day$^{-1}$ under the control, BPFM and RPM, respectively. On September 27 when potato canopy was fully developed, the soil surface net radiation in the control was sharply decreased as compared to that of Aug. 30, whereas the net radiation of the mulched soil surfaces showed little changes. The soil heat flux was -0.01, 0.95, and 0.12 MJ $m^{-2}$${day}^{-1}$ at the soil surface under the control, BPFM and RPM, respectively. As the mulching treatments brought about such alteration of energy partitioning into the soil, the highest soil temperature was recorded in BPFM and the lowest in RMP without regard to potato canopy development. However, the soil temperature differences among the treatments become smaller when potato canopy were fully developed.

  • PDF

On the manufacturing of WPC (Wood Plastic Composites) with Heat-Catalyst Polymerization (I) - On the characteristics of composites made from monomer Methyl MethacryIate and several commercial woods in Korea (가열(加熱)·촉매중합법(觸媒重合法)에 의한 목재(木材)·고분자복합체(高分子複合體) 제조(製造)(I) - MMA에 의한 한국산(韓國産) 주요목재(主要木材)의 복합체특성(複合體特性))

  • Cho, Nam-Seok;Jo, Jae-Myeong;Ahn, Won-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.3-16
    • /
    • 1974
  • One of the disadvantages of. wood and wood products is their hydroscopicity or dimensional instability. This is responsible for the loss of green volume of lumber as seasoning degrade. Dimensional stabilization is needed to substantially reduce seasoning defects and degrades and for increasing the serviceability of wood products. Recently, considerable world-wide attention has been drawn to the so-called Wood-Plastic Composites by irradiation-and heat-catalyst-polymerization methods and many research and developmental works have been reported. Wood-Plastic Composites are the new products having the superior mechanical and physical properties and the combinated characteristics of wood and plastic. The purpose of this experiment was to obtain the basic data for the improvement of wooden materials by manufacturing WPC. The species examined were Mulpurae-Namoo (Fraxinus, rhynchophylla), Sea-Namoo (Carpinus laxiflora), Cheungcheung-Namoo (Cornus controversa), Gorosae-Namoo (Acermono), Karae-Namoo(Juglans mandshurica) and Sanbud-Namoo (Prunus sargentii), used as blocks of type A ($3{\times}3{\times}40cm$) and type B ($5{\times}5{\times}60cm$), and were conditioned to about 10~11% moisture content before impregnation in materials humidity control room. Methyl methacrylate (MMA) as monomer and benzoyl peroxide (BPO) as initiator are used. The monomer containing BPO was impregnated into wood pieces in the vacuum system. After impregnation, the treated samples were polymerized with heat-catalyst methods. The immersed weights of monomer in woods are directly proportionated to the impregnation times. Monomer impregnation properties of Cheungcheung-Namoo, Mulpurae-Namoo and Seo-Namoo are relatively good, but in Karae-Namoo, it is very difficult to impregnate the monomer MMA. Fig. 3 shows the linear relation between polymer retentions in wood and polymerization times; that is, the polymer loadings are increasing with polymerization times. Furthermore species, moisture content, specific gravity and anatomical or conductible structure of wood, bulking solvents and monomers etc have effects on both of impregnation of monomer and polymer retention. Physical properties of treated materials are shown in table 3. Increasing rates of specific gravity are ranged 3 to 24% and volume swelling 3 to 10%. ASE is 20 to 46%, AE 14 to 50% and RWA 18 to 40%. Especially, the ASE in relation to absorption of liquid water increases approximately with increase of polymer content, although the bulking effect of the polymerization of monomer may also be influential. WPCs from Mulpurae-Namoo and Cheungcheung-Namoo have high dimensional stability, while its of Karae-Namoo and Seo-Namoo are-very low. Table 4 shows the mechanical properties of WPCs from 6 species. With its specific gravity and polymer loading increase, all mechanical properties are on the increase. Increasing rate of bending strength is 10 to 40%, compression strength 25 to 70%, ;impact bending absorbed energy 4 to 74% and tensile strength 18 to 56%. Mulpurae-Namoo and Cheungcheung-Namoo with high polymer content have considerable high increasing rate of strengths. But incase of Karae-Namoo with inferior monomer impregnation it is very low. Polymer retention in cell wall is 0.32 to 0.70%. Most of the polymer is accumulated in cell lumen. Effective. of polymer retention is 58.59% for Mulpurae-Namoo, 26.27% for Seo-Namoo, 47.98% for Cheungcheung-Namoo, 25.64% for Korosae-Namoo, 9.96% for Karae-Namoo and 25.84% for Sanbud-Namoo.

  • PDF

Performance Evaluation of K-based Solid Sorbents Depending on the Internal Structure of the Carbonator in the Bench-scale CO2 Capture Process (벤치급 CO2 포집공정에서 흡수반응기의 내부구조에 따른 K-계열 고체흡수제의 성능평가)

  • Kim, Jae-Young;Lim, Ho;Woo, Je Min;Jo, Sung-Ho;Moon, Jong-Ho;Lee, Seung-Yong;Lee, Hyojin;Yi, Chang-Keun;Lee, Jong-Seop;Min, Byoung-Moo;Park, Young Cheol
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.419-425
    • /
    • 2017
  • In this study, the performance characteristics of the K-based sorbents (KEP-CO2P2, KEPCO RI, Korea) has been studied in relation with the heat exchanger structure and shape in a mixing zone of the carbonator in the bench-scale dry $CO_2$ capture process. Two types of heat exchangers (different structure and shape) were used in the carbonator as CASE 1 and CASE 2, in which the experiment has been continuously performed under the same operating conditions. During the continuous operation, working temperature of carbonator was 75 to $80^{\circ}C$, that of regenerator was 190 to $200^{\circ}C$, and $CO_2$ inlet concentration of the feed gas was 12 to 14 vol%. Especially, to compare the dynamic sorption capacity of sorbents, the differential pressure of the mixing zone in the carbonator was maintained around 400 to 500 mm $H_2O$. Also, solid samples from the carbonator and the regenerator were collected and weight variation of those samples was evaluated by TGA. The $CO_2$ removal efficiency and the dynamic sorption capacity were 64.3% and 2.40 wt%, respectively for CASE 1 while they were 81.0% and 4.66 wt%, respectively for CASE 2. Also, the dynamic sorption capacity of the sorbent in CASE 1 and CASE 2 was 2.51 wt% and 4.89 wt%, respectively, based on the weight loss of the TGA measurement results. Therefore, It was concluded that there could be a difference in the performance characteristics of the same sorbents according to the structure and type of heat exchanger inserted in the carbonator under the same operating conditions.

Review of Production, Husbandry and Sustainability of Free-range Pig Production Systems

  • Miao, Z.H.;Glatz, P.C.;Ru, Y.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1615-1634
    • /
    • 2004
  • A review was undertaken to obtain information on the sustainability of pig free-range production systems including the management, performance and health of pigs in the system. Modern outdoor rearing systems requires simple portable and flexible housing with low cost fencing. Local pig breeds and outdoor-adapted breeds for certain environment are generally more suitable for free-range systems. Free-range farms should be located in a low rainfall area and paddocks should be relatively flat, with light topsoil overlying free-draining subsoil with the absence of sharp stones that can cause foot damage. Huts or shelters are crucial for protecting pigs from direct sun burn and heat stress, especially when shade from trees and other facilities is not available. Pigs commonly graze on strip pastures and are rotated between paddocks. The zones of thermal comfort for the sow and piglet differ markedly; between 12-22$^{\circ}C$ for the sow and 30-37$^{\circ}C$ for piglets. Offering wallows for free-range pigs meets their behavioural requirements, and also overcomes the effects of high ambient temperatures on feed intake. Pigs can increase their evaporative heat loss via an increase in the proportion of wet skin by using a wallow, or through water drips and spray. Mud from wallows can also coat the skin of pigs, preventing sunburn. Under grazing conditions, it is difficult to control the fibre intake of pigs although a high energy, low fibre diet can be used. In some countries outdoor sows are fitted with nose rings to prevent them from uprooting the grass. This reduces nutrient leaching of the land due to less rooting. In general, free-range pigs have a higher mortality compared to intensively housed pigs. Many factors can contribute to the death of the piglet including crushing, disease, heat stress and poor nutrition. With successful management, free-range pigs can have similar production to door pigs, although the growth rate of the litters is affected by season. Piglets grow quicker indoors during the cold season compared to outdoor systems. Pigs reared outdoors show calmer behaviour. Aggressive interactions during feeding are lower compared to indoor pigs while outdoor sows are more active than indoor sows. Outdoor pigs have a higher parasite burden, which increases the nutrient requirement for maintenance and reduces their feed utilization efficiency. Parasite infections in free-range pigs also risks the image of free-range pork as a clean and safe product. Diseases can be controlled to a certain degree by grazing management. Frequent rotation is required although most farmers are keeping their pigs for a longer period before rotating. The concept of using pasture species to minimise nematode infections in grazing pigs looks promising. Plants that can be grown locally and used as part of the normal feeding regime are most likely to be acceptable to farmers, particularly organic farmers. However, one of the key concerns from the public for free-range pig production system is the impact on the environment. In the past, the pigs were held in the same paddock at a high stocking rate, which resulted in damage to the vegetation, nutrient loading in the soil, nitrate leaching and gas emission. To avoid this, outdoor pigs should be integrated in the cropping pasture system, the stock should be mobile and stocking rate related to the amount of feed given to the animals.

Characteristic Study of LNG Combustion in the mixture of $O_2/CO_2$ ($O_2/CO_2$ 혼합조건에 따른 LNG 연소특성해석)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Lee, Dae-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.647-653
    • /
    • 2007
  • The ultimate objective of this study is to develop a reliable oxygen-enriched combustion techniques especially for the case of the flue gas recycling in order to reduce the $CO_2$ emissions from practical industrial boilers. To this end a systematic numerical investigation has been performed, as a first step, for the resolution of the combusting flame characteristics of lab-scale LNG combustor. One of the important parameters considered in this study is the level of flue gas recycling calculated in oxygen enriched environment. As a summary of flame characteristics, for the condition of 100% pure $O_2$ as oxidizer without any flue gas recycling, the flame appears as long and thin laminar-like shape with relatively high flame temperature. The feature of high peak of flame temperature is explained by the absence of dilution and heat loss effects due to the presence of $N_2$ inert gas. The same reasoning is also applicable to the laminarized thin flame one, which is attributed to the decrease of the turbulent mixing. These results are physically acceptable and consistent and further generally in good agreement with experimental results appeared in open literature. As the level of $CO_2$ recycling increases in the mixture of $O_2/CO_2$, the peak flame temperature moves near the burner region due to the enhanced turbulent mixing by the increased amount of flow rate of oxidizer stream. However, as might be expected, the flue gas temperature decreases due to presence of $CO_2$ gas together with the inherent feature of large specific heat of this gas. If the recycling ratio more than 80%, gas temperatures drop so significantly that a steady combustion flame can no longer sustain within the furnace. However, combustion in the condition of 30% $O_2/70% $ $CO_2$ can produce similar gas temperature profiles to those of conventional combustion in air oxidizer. An indepth analyses have been made for the change of flame characteristics in the aspect of turbulent intensity and heat balance.

Role of Citrate Synthase in Acetate Utilization and Protection from Stress-Induced Apoptosis

  • Lee, Yong-Joo;Kang, Hong-Yong;Maeng, Pil Jae
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.39-41
    • /
    • 2008
  • The yeast Saccharomyces cerevisiae has been shown to contain three isoforms of citrate synthase (CS). The mitochondrial CS, Cit1, catalyzes the first reaction of the TCA cycle, i.e., condensation of acetyl-CoA and oxaloacetate to form citrate [1]. The peroxisomal CS, Cit2, participates in the glyoxylate cycle [2]. The third CS is a minor mitochondrial isofunctional enzyme, Cit3, and related to glycerol metabolism. However, the level of its intracellular activity is low and insufficient for metabolic needs of cells [3]. It has been reported that ${\Delta}cit1$ strain is not able to grow with acetate as a sole carbon source on either rich or minimal medium and that it shows a lag in attaining parental growth rates on nonfermentable carbon sources [2, 4, 5]. Cells of ${\Delta}cit2$, on the other hand, have similar growth phenotype as wild-type on various carbon sources. Thus, the biochemical basis of carbon metabolism in the yeast cells with deletion of CIT1 or CIT2 gene has not been clearly addressed yet. In the present study, we focused our efforts on understanding the function of Cit2 in utilizing $C_2$ carbon sources and then found that ${\Delta}cit1$ cells can grow on minimal medium containing $C_2$ carbon sources, such as acetate. We also analyzed that the characteristics of mutant strains defective in each of the genes encoding the enzymes involved in TCA and glyoxylate cycles and membrane carriers for metabolite transport. Our results suggest that citrate produced by peroxisomal CS can be utilized via glyoxylate cycle, and moreover that the glyoxylate cycle by itself functions as a fully competent metabolic pathway for acetate utilization in S. cerevisiae. We also studied the relationship between Cit1 and apoptosis in S. cerevisiae [6]. In multicellular organisms, apoptosis is a highly regulated process of cell death that allows a cell to self-degrade in order for the body to eliminate potentially threatening or undesired cells, and thus is a crucial event for common defense mechanisms and in development [7]. The process of cellular suicide is also present in unicellular organisms such as yeast Saccharomyces cerevisiae [8]. When unicellular organisms are exposed to harsh conditions, apoptosis may serve as a defense mechanism for the preservation of cell populations through the sacrifice of some members of a population to promote the survival of others [9]. Apoptosis in S. cerevisiae shows some typical features of mammalian apoptosis such as flipping of phosphatidylserine, membrane blebbing, chromatin condensation and margination, and DNA cleavage [10]. Yeast cells with ${\Delta}cit1$ deletion showed a temperature-sensitive growth phenotype, and displayed a rapid loss in viability associated with typical apoptotic hallmarks, i.e., ROS accumulation, nuclear fragmentation, DNA breakage, and phosphatidylserine translocation, when exposed to heat stress. Upon long-term cultivation, ${\Delta}cit1$ cells showed increased potentials for both aging-induced apoptosis and adaptive regrowth. Activation of the metacaspase Yca1 was detected during heat- or aging-induced apoptosis in ${\Delta}cit1$ cells, and accordingly, deletion of YCA1 suppressed the apoptotic phenotype caused by ${\Delta}cit1$ mutation. Cells with ${\Delta}cit1$ deletion showed higher tendency toward glutathione (GSH) depletion and subsequent ROS accumulation than the wild-type, which was rescued by exogenous GSH, glutamate, or glutathione disulfide (GSSG). Beside Cit1, other enzymes of TCA cycle and glutamate dehydrogenases (GDHs) were found to be involved in stress-induced apoptosis. Deletion of the genes encoding the TCA cycle enzymes and one of the three GDHs, Gdh3, caused increased sensitivity to heat stress. These results lead us to conclude that GSH deficiency in ${\Delta}cit1$ cells is caused by an insufficient supply of glutamate necessary for biosynthesis of GSH rather than the depletion of reducing power required for reduction of GSSG to GSH.

  • PDF

Properties of Hot Weather Nuclear Power Plant Concrete with Water Cooling Method and Retarding used (배합수 냉각방법 및 지연제 사용에 따른 서중 원전콘크리트의 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Jang, Seok-Soo;Yeo, In-Dong;Choi, Jong-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4602-4609
    • /
    • 2013
  • In summer and winter, the difference between the temperature during the day and that during the night is high, which leads to various problems during concrete placement, such as cracks and defects in the concrete as well as low durability and strength. Although nuclear power plant concrete is widely used for placement in all seasons, particular attention must be paid to its quality during the summer. Therefore, we evaluated the effects of a cooling method for mixing water, which is a commonly used hot weather precooling method, and the use of a retarder, on the characteristics of Nuclear Power Plant concrete. In the cooling method for mixing water, cold water at 5 was used, with 50% of the water content consisting of ice flakes. The effects of using a retarder were evaluated by reviewing the characteristics of the cement at the unset stage and after hardening. To evaluate the characteristics of the unset cement, we measured the slump, air volumes, setting times, and pressure strengths after hardening. Furthermore, we measured the heat of hydration at different temperatures; the loss of heat was minimized using insulation. Both the slump time and the complete ageing time of the air volume were found to be 120 min at $20^{\circ}C$ and 40 min at $40^{\circ}C$. In the case when the cooling method for mixing water was used and in the case when a retarder was used, the initial and final sets by penetration resistance were delayed, and the delay decreased with increasing air temperature. For the heat of hydration, the cooling method for mixing water not only lowered the maximum temperature but also delayed its attainment. However, the use of a retarder had no effect on the maximum temperature. Moreover, in the early ages (e.g., 3 and 7 days), the pressure strength of the concrete was lower than that of plain cement. However, the strength of 28-day concrete met the standard construction specifications.

Deformation Characteristics of Zircaloy-4 Fuel Cladding due to Oxidation in Environment of High Temperature and Steam (고온, 수증기 속에서 산화된 질칼로이-4 핵연료 피복관의 변형 특성에 관한 연구)

  • Jung, Sung-Hoon;Suh, Kyung-Soo;Kim, In-Sup
    • Nuclear Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.218-227
    • /
    • 1986
  • Studies were conducted to determine the extent of oxidation and same of the mechanical property changes of Zircaloy-4 fuel cladding after it was exposed to hot steam environment. The purpose of these tests was to provide some informations on the embrittlement behavior of CANDU type fuel cladding, which could be experienced under the loss-of-coolant accident conditions. The Zircaloy fuel cladding tubes were exposed in a steam environment at the temperature of 90$0^{\circ}C$, 1,00$0^{\circ}C$. The growth of the ZrO$_2$ layer combined with an oxygen rich $\alpha$-phase layer into the Zircaloy tube material was found as a function of time t and temperature of steam exposure, E=1.1√Dt+0.002 where D is a temperature dependent diffusion coefficient. The tensile strength of the specimens exposed for a short period increased but decreased continuously with further exposure. The circumferential elongation was drastically changed with the exposure time while the hoop strength did't decrease greatly. The X-ray measurement of preferred orientation of the Zircaloy tube material indicated that grains in the as received tube were oriented such that the poles of the basal (0001) planes were predominantly radial, while the poles of the basal plane in the tube materials heattreated at 1,00$0^{\circ}C$ were oriented tangentially. It appears that this reoriented texture may contribute to lessening the decrease of the hoop strength of the heat treated Zircaloy tube material.

  • PDF