• Title/Summary/Keyword: Heat Loss

Search Result 2,112, Processing Time 0.032 seconds

Oscillatory Instabilities of Edge Flames in Solid Rocket Combustion (고체연료로켓에서 에지화염의 맥동 불안정성)

  • Kim Kang-Tae;Park Jun-Sung;Park Jeong;Kim Jeong-Soo;Keel Sang-In;Cho Han-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.275-278
    • /
    • 2006
  • Systematic experiments in $CH_4/Air$ counterflow diffusion flames diluted with He have been undertaken to study the oscillatory instability in which lateral heat loss could be remarkable at low global strain rate. The oscillatory instability arises for Lewis numbers greater than unity and occurs near extinction condition. The dynamic behaviors of extinction in this configuration can be classified into three modes; growing, harmonic and decaying oscillation mode near extinction. As the global strain rate decreases, the amplitude of the oscillation becomes larger. This is caused by the increase of lateral heat loss which ran be confirmed by the reduction of lateral flame size. Oscillatory edge flame instabilities at low global strain rate are shown to be closely associated with not only Lewis number but also heat loss (radiation and lateral heat loss).

  • PDF

Optimization of a Convective Rectangular Profile Annular Fin (대류 직각 형상 환형 휜의 최적화)

  • 강형석;조철현
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • The rectangular profile annular fin with fixed volume is optimized using 2-dimensional analytic method. For a base boundary condition, convection from fluid within the pipe to the inside wall of the pipe and conduction from the inside wall of the pipe to the fin base are considered. Heat loss from the fin tip radius is not ignored. The maximum heat loss, the optimum fin tip radius and the optimum fin half thickness corresponding to the maximum heat loss are presented as a function of fin base radius, Biot number over the fin surface and Biot number within the pipe. Results show 1) the maximum heat loss increases as both Biot number over the fin surface and Biot number within the pipe increase and as fin base radius decreases 2) the optimum fin thickness increases as Biot number within the pipe decreases or as fin base radius and Biot number over the fin surface increase.

Study on Flame Oscillations in Laminar Lift-off Butane Flames Diluted with Nitrogen (질소 희석된 부탄 부상화염에 있어서 화염진동에 관한 연구)

  • Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Kim, Jeong-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.729-738
    • /
    • 2010
  • The characteristics of lifted butane flames diluted with nitrogen have been investigated experimentally in order to elucidate the mechanism of individual flame oscillation modes. Flame oscillations in laminar free-jet lift-off flames are classified into the following five regimes: a stabilized lift-off regime (I), a heat-loss-induced oscillation (II), a buoyancy-induced oscillation along with a heat-loss-induced oscillation (III), a combined form of an oscillation prior to blow-out and a heat-loss-induced oscillation (IV), and a combination of an oscillation prior to blow-out and a buoyancy-induced oscillation along with a heat-loss-induced oscillation (V). The characterization of the individual flame oscillations modes are presented and discussed using Strouhal numbers and their relevant parameters by the analysis of the power spectrum for temporal variation of the lift-off height.

A Method to Reduce Flow Depth of a Plate Heat Exchanger without a Loss of Heat Transfer Performance (판형 열교환기의 열전달성능 손실 없이 유동방향 길이를 축소하는 방법)

  • Song Gwi-Eun;Lee Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.129-136
    • /
    • 2006
  • Optimal design of an air-to-liquid finned plate heat exchanger is considered theoretically in this study. Based on existing correlations for the pressure loss and the heat transfer in channel flows, the optimal configuration of the plate heat exchanger including the optimal plate pitch and the optimal fin pitch is obtained to maximize the heat transfer within the limit of the pressure drop for a given flow depth of the plate heat exchanger. It is found that the optimal fin pitch is about one ninth of the optimal plate pitch. In the optimal configuration, the flow and thermal condition in the channels is just at the boundary between the laminar developing and laminar fully developed states. It is also found when reducing the flow depth of plate heat exchangers for compactness, the heat transfer performance can be maintained exactly the same if the geometric parameters such as the plate thickness, plate pitch, fin thickness, and fin pitch are reduced proportional to the square root of the flow depth as long as the flow keeps laminar within the heat exchangers.

Simulation Analysis of Bio-Methane Decomposition Using Solar Thermal Energy (태양열 이용 바이오메탄 분해 해석연구)

  • Kim, Haneol;Lee, Sangnam;Lee, Sang Jik;Kim, Jongkyu
    • New & Renewable Energy
    • /
    • v.17 no.1
    • /
    • pp.40-49
    • /
    • 2021
  • In this study, the optical properties, heat transfer capabilities and chemical reaction performance of a methane thermal decomposition reactor using solar heat as a heat source were numerically analyzed on the basis of the cavity shape. The optical properties were analyzed using TracePro, a Monte Carlo ray tracing-based program, and the heat transfer analysis was performed using Fluent, a CFD program. An indirect heating tubular reactor was rotated at a constant speed to prevent damage by the heat source in the solar furnace. The inside of the reactor was filled with a porous catalyst for methane decomposition, and the outside was insulated to reduce heat loss. The performance of the reactor, based on cavity shape, was calculated when solar heat was concentrated on the reactor surface and methane was supplied into the reactor in an environment with a solar irradiance of 700 W/㎡, a wind speed of 1 m/s, and an outdoor temperature of 25℃. Thus, it was confirmed that the heat loss of the full-cavity model decreased to 13% and the methane conversion rate increased by 33.5% when compared to the semi-cavity model.

A Study on the Efficiency Prediction of Low-Voltage and High-Current dc-dc Converters Using GaN FET-based Synchronous Rectifier (GaN FET 기반 동기정류기를 적용한 저전압-대전류 DC-DC Converter 효율예측)

  • Jeong, Jea-Woong;Kim, Hyun-Bin;Kim, Jong-Soo;Kim, Nam-Joon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.297-304
    • /
    • 2017
  • The purpose of this paper is to analyze losses because of switching devices and the secondary side circuit diodes of 500 W full bridge dc-dc converter by applying gallium nitride (GaN) field-effect transistor (FET), which is one of the wide band gap devices. For the detailed device analysis, we translate the specific resistance relation caused by the GaN FET material property into algebraic expression, and investigate the influence of the GaN FET structure and characteristic on efficiency and system specifications. In addition, we mathematically compare the diode rectifier circuit loss, which is a full bridge dc-dc converter secondary side circuit, with the synchronous rectifier circuit loss using silicon metal-oxide semiconductor (Si MOSFET) or GaN FET, which produce the full bridge dc-dc converter analytical value validity to derive the final efficiency and loss. We also design the heat sink based on the mathematically derived loss value, and suggest the heat sink size by purpose and the heat divergence degree through simulation.

A flammability limit model for hydrogen-air-diluent mixtures based on heat transfer characteristics in flame propagation

  • Jeon, Joongoo;Choi, Wonjun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1749-1757
    • /
    • 2019
  • Predicting lower flammability limits (LFL) of hydrogen has become an ever-important task for safety of nuclear industry. While numerous experimental studies have been conducted, LFL results applicable for the harsh environment are still lack of information. Our aim is to develop a calculated non-adiabatic flame temperature (CNAFT) model to better predict LFL of hydrogen mixtures in nuclear power plant. The developed model is unique for incorporating radiative heat loss during flame propagation using the CNAFT coefficient derived through previous studies of flame propagation. Our new model is more consistent with the experimental results for various mixtures compared to the previous model, which relied on calculated adiabatic flame temperature (CAFT) to predict the LFL without any consideration of heat loss. Limitation of the previous model could be explained clearly based on the CNAFT coefficient magnitude. The prediction accuracy for hydrogen mixtures at elevated initial temperatures and high helium content was improved substantially. The model reliability was confirmed for $H_2-air$ mixtures up to $300^{\circ}C$ and $H_2-air-He$ mixtures up to 50 vol % helium concentration. Therefore, the CNAFT model developed based on radiation heat loss is expected as the practical method for predicting LFL in hydrogen risk analysis.

Analysis of the Top Loss Coefficient for Flat Plate Collector in a Solar Air-Conditioning System during Winter (태양열 이용 냉난방 공조시스템중 평판형 집열기의 동계 상부 열손실 해석)

  • Kim, B.C.;Choi, K.H.;Kum, J.S.;Kim, J.R.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.15-24
    • /
    • 1998
  • There are mainly 3 heat losses from solar collector; top, bottom, and edge heat loss. Usually edge heat loss is small so that could be neglected. Of the total thermal losses occurring in a flat plate solar collector, top loss heat losses are dominant. Therefore it is necessary to calculate the top loss coefficient accurately in order to find out performance of solar collector. The flat plate solar collector(regenerator in summer) used in this study was made for year-round all conditioning. In order to find out collector efficiency for heating in winter without a system change, outdoor experiment was done. The top loss coefficient of this collector was about 3 to $4.5W/m^2^{\circ}C$. Futhermore use of selective coating in trickling surface can improve a performance of flat plate solar collector.

  • PDF

A Study on the Vitamins Contents in UHT Milk according to Fortification Methods (비타민 강화 방법에 따른 UHT 우유의 비타민 함량에 대한 연구)

  • 인영민;정인경;정석근;함준상
    • Food Science of Animal Resources
    • /
    • v.22 no.2
    • /
    • pp.172-178
    • /
    • 2002
  • Vitamins are bio-active materials and essential elements in our body but some of them are very low in milt Various vitamin-fortified milks are developed by the help of milk processing technology. However, heat treatments can affect vitamins contents in milk. Total loss of vitamins during the UBT(ultra high temperature) treatment was investigated. UHT treatment caused 60∼70% loss for vitamin C, and 30∼40% loss for vit. D3 and vit. E which are well-known as heat stable materials. On the contrary, degradation of water-soluble vitamins is relatively very low in the capsule-coated state. The capsule could reduce the loss of vitamins by protecting vitamins from the degradation factors such as heat, oxygen, lights etc. The fortification method using capsule can be thought as a new way to reduce the loss of vitamins during milk processing. Further study about heat treatment time and temperature, and capsule coating and materials will be required to minimize the loss of vitamins in milt.

Thermal-hydraulic phenomena and heat removal performance of a passive containment cooling system according to exit loss coefficient

  • Sun Taek Lim;Koung Moon Kim;Jun-young Kang;Taewan Kim;Dong-Wook Jerng;Ho Seon Ahn
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4077-4086
    • /
    • 2024
  • The natural circulation system has been widely studied for use in various applications because of its inherent advantage. However, it has a key weakness called flow instability that makes the system unstable. Through massive previous research, the mechanisms of flow instability were analyzed, but there was an ambiguous aspect related to the effect of experimental parameters on the phenomenon. Particularly, there has been no report on the heat transfer performance of the system when flow instability phenomena were present. In this study, thermal-hydraulic phenomena of a two-phase natural circulation system that functions as a passive containment cooling system (PCCS) was investigated according to experimental parameters, namely, the temperature boundary (120-158 ℃) and exit loss coefficient (0-34.5) under atmospheric pressure conditions. The experimental results showed five different flow types in the loop. The flow modes that occurred by the interaction between flashing and boiling were classified by referring to the mass flow rate, void fraction, and visualization data. The system was more unstable when the temperature boundary conditions increased, but it was more stable when the exit loss coefficient increased. These results have only been confirmed in our research. The reason for the results is that the flow conditions are located on the boundary between Density Wave Oscillation I and the stable flow region, and that boundary does not have clear criteria. In addition, comparing the heat transfer performance of a system by heat rate can confirm the effect of flow instability on the thermal performance of the passive cooling system. As a result, the high exit loss coefficient stabilizes the system better than the low case and has similar heat removal performance.