• 제목/요약/키워드: Heat Loss

검색결과 2,093건 처리시간 0.026초

퍼즐매트의 연소속도에 관한 연구 (A Study on the Burning Rate of Puzzle Mats)

  • 박형주
    • 한국안전학회지
    • /
    • 제23권6호
    • /
    • pp.84-90
    • /
    • 2008
  • The mass loss rate and heat release rate of puzzle mats were analysed using variable external irradiation level. Five samples of puzzle mat were tested in this study : Type A, B, C, D and E. Type A, B and C are all general grades whereas Type D and E are both Flame retardant grades. Incident heat fluxs of $25kW/m^2$, $35kW/m^2$, $50kW/m^2$ and $70kW/m^2$ were selected for these experiments. All samples were tested in the horizontal orientation and were wrapped in a single layer of aluminum foil. Each sample was nominally 20mm thick and 100mm square. The combustion heat and mass loss rate were carried out from Oxygen bomb calorimeter and mass loss calorimeter according to ISO 5660-1 respectively. Heat release rates were calculated using the equation ${\dot{Q}}=A_f{\dot{m}}"_X{\Delta}H_c=0.75A_f{\dot{m}}"{\Delta}H_c$. where $A_f$ is the horizontal burning area of the sample, $\dot{m}"$ is mass loss rate per unit area, ${\Delta}H_c$ is complete heat of combustion and 0.75 is combustion efficiency.

냉장고 가스켓 주위의 복사열전달 효과에 관한 연구 (A Study on the Radiation Heat Transfer Effect near a Refrigerator Gasket)

  • 하지수
    • 한국산학기술학회논문지
    • /
    • 제16권3호
    • /
    • pp.1605-1610
    • /
    • 2015
  • 본 논문은 냉장고의 열손실의 약 30%를 차지하고 있는 가스켓 주위의 열전달 해석시 복사열전달을 고려하지 않은 경우와 고려한 경우가 많은 차이가 있어서 가스켓 주위의 열전달 해석시 복사열전달 고려 여부에 따른 열손실 효과를 살펴보는 연구이다. 이를 위해 가스켓 주위를 단순화한 형상으로 모델링하여 열전달 전산해석을 수행하였다. 본 연구를 통해서 가스켓 내부의 공기층을 단순히 전도열전달만 고려한 경우 열손실이 $25.6W/m^2$이고 복사열전달을 함께 고려한 경우 $55.0W/m^2$로 약 2.2배 크게 나타남을 알 수 있었다. 가스켓 내부에 복사열전달 차단판을 0에서 7개로 변화하면서 복사열전달 저감 효과를 살펴본 결과 차단판 개수가 증가하여 7개 인 경우는 설치하지 않은 경우에 비하여 열손실이 $55.0W/m^2$에서 $36.7W/m^2$로 33% 감소함을 알 수 있었다. 또한 같은 개수의 복사 차단판일 경우는 냉장고 내부와 외부에 치우치는 쪽으로 설치하는 것이 가스켓의 가운데에 설치하는 것 보다 효과적임을 알 수 있었다.

사다리꼴 핀의 최적 성능과 설계 (Optimum Performance and Design of a Trapezoidal Fin)

  • 강형석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.82-85
    • /
    • 2006
  • 측면 기울기가 변하는 사다리꼴 핀이 일차원 해석적 방법에 의하여 최적으로 설계된다. 각기 다른 네 경우의 대류특성계수에 대하여 핀 끝 길이를 따른 열손실의 변화경향이 보여 진다. 최적의 열손실은 다소 임의적으로 최대열손실의 92%로 선택된다. 이러한 최적의 열손실이 발생할 때의 최적의 핀 길이 대 대류특성계수의 변화가 나타내진다. 최적의 유용성과 특정한 경우의 유용성이 핀 형상 계수의 함수로 보여 진다.

  • PDF

정적 연소실에서의 열 손실 해석 모델 (Analysis of Heat Loss Effect of Combustion in Closed Vessel)

  • 이대훈;권세진
    • 한국연소학회지
    • /
    • 제6권1호
    • /
    • pp.14-19
    • /
    • 2001
  • Interests and importance of down-scale combustor is increasing with the emerging need for miniaturized power source which is now a bottleneck of micro system development. But in down scaled combustor increased heat loss compared to thermal energy generation inhibits the usability and application of the device, so as a preliminary work of down scaled combustor fabrication. Modeling tool for the device should be established, in this study modeling approach of closed vessel combustion phenomena that can express heat loss effect and resulting quenching is proposed and the result is compared with experiment data. From this model heat loss effect following combustor scale down can be further understood, and further more design parameter and analysis tool can be obtained.

  • PDF

반경방향 열흐름 섬광법에서 열손실의 영향 (The Effect of Heat Loss on the Radial Heat Flow in the Flash Method)

  • 이홍주;김순규
    • 대한기계학회논문집
    • /
    • 제13권2호
    • /
    • pp.257-264
    • /
    • 1989
  • 본 연구에서는 높은 열확산의 재료까지도 수용할 수 있도록 시편의 전면 전체를 가열하는 기존의 방법으로부터, 가열하는 시편 전면의 면적을 그 중심으로 부터 임의로 조절하여 축 및 반경방향의 열흐름을 강화시켜, 반경방향의 온도를 측정한 후 이를 이용하여 열확산계수를 구할 수 있는 방정식을 제시하였다. 방정식에서는 시편의 전.후면은 물론 열원의 방사시간도 함께 다루었다.

Burning Characteristics of Wood-based Materials using Cone Calorimeter and Inclined Panel Tests

  • Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제30권3호
    • /
    • pp.18-25
    • /
    • 2002
  • Research to discuss the fire performance of materials requires tools for measuring their burning characteristics and validated fire growth models to predict fire behavior of the materials under specific tire scenarios using the measured properties as input for the models. In this study, burning characteristics such as time to ignition, weight loss rate, flame spread, heat release rate, total heat evolved, and effective heat of combustion for four types of wood-based materials were evaluated using the cone calorimeter and inclined panel tests. Time to ignition was affected by not only surface condition and specific gravity of the tested materials but also the type and magnitude of heat source. Results of weight loss rate, measured by inclined panel tests, indicated that heat transfer from the contacted flame used as the heat source into the inner part of the specimen was inversely proportional to specific gravity of material. Flame spread was closely related with ignition time at the near part of burning zone. Under constant and severe external heat flux, there was little difference in weight loss rate and total heat evolved between four types of wood-based panels. More applied heat flux caused by longer ignition time induced a higher first peak value of heat release rate. Burning characteristics data measured in this study can be used effectively as input for fire growth models to predict the fire behavior of materials under specific fire scenarios.

고압하에서 수소 확산화염의 소염에 미치는 복사 열손실 효과에 관한 수치적 연구 (A Numerical Study on Effect of Radiative Heat Loss on Extinction of Hydrogen Diffusion Flames at High Pressure)

  • 오태균;손채훈
    • 대한기계학회논문집B
    • /
    • 제32권5호
    • /
    • pp.351-358
    • /
    • 2008
  • Extinction characteristics of hydrogen-air diffusion flames at various pressures are investigated numerically by adopting counterflow flame configuration as a model flamelet. Especially, effect of radiative heat loss on flame extinction is emphasized. Only gas-phase radiation is considered here and it is assumed that $H_2O$ is the only radiating species. Radiation term depends on flame thickness, temperature, $H_2O$ concentration, and pressure. From the calculated flame structures at various pressures, flame thickness decreases with pressure, but its gradient decreases at high pressure. Flame temperature and mole fraction of $H_2O$ increase slightly with pressure. Accordingly, as pressure increases, radiative heat loss becomes dominant. When radiative heat loss is considered, radiation-induced extinction is observed at low strain rate in addition to transport-induced extinction. As pressure increases, flammable region, where flame is sustained, shifts to the high-temperature region and then, shrunk to the point on the coordinate plane of flame temperature and strain rate. The present numerical results show that radiative heat loss can reduce the operating range of a combustor significantly.

마이크로핀관과 평활관에서의 증발열전달과 압력손실 특성 (Evaporation heat transfer and Pressure loss in micro-fin tubes and a smooth tube)

  • 장세환;정시영;홍영기
    • 설비공학논문집
    • /
    • 제11권2호
    • /
    • pp.215-223
    • /
    • 1999
  • Evaporation heat transfer coefficient and pressure loss were measured for three different micro-fin tubes and a smooth tube. The experiments were carried out with R-22 over a wide range of vapor Quality, mass velocity and heat flux. Heat transfer coefficient of the tube with slightly modified fin shape was found to be higher than that of the commercial reference tube by 60%. The improvement of heat transfer has been achieved without noticeable increase of pressure loss. Heat transfer coefficient was increased with increasing quality, refrigerant mass flux, and heat flux. However, the effect of refrigerant mass flux and heat flux was not great. Heat transfer coefficient at bottom was lower than that at top of the tube in low quality region, which suggested the existence of stratification in the micro-fin tube. Pressure drop was linearly increased with increasing refrigerant quality and was proportional to about square of mass flux.

  • PDF

A Study on Heat Loss from Offshore Pipelines Depending on the Thermal Conductivity of Backfills and Burial Depth

  • Park, Dong-Su;Seo, Young-Kyo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권1호
    • /
    • pp.1-6
    • /
    • 2018
  • Subsea pipelines are designed to transport mixtures of oil, gas, and their associated impurities from the wellhead that can have temperatures as high as $100^{\circ}C$, while the external temperature can be as low as $5^{\circ}C$. Heat can be lost from the subsea pipeline containing high-temperature fluid to the surrounding environment. It is important that the pipeline is designed to ensure that the heat loss is small enough to maintain flow and avoid the unwanted deposition of hydrate and wax, which occurs at a critical temperature of approximately $40^{\circ}C$. Therefore, it is essential to know the heat loss of subsea pipelines under various circumstances. This paper presents a comparison between numerical analyses and existing theoretical formulas for different backfills and burial depth.

엔진 냉각 시스템 개선에 관한 연구 (A Study on Improvement of Engine Cooling System)

  • 김문헌;오병욱
    • 한국자동차공학회논문집
    • /
    • 제2권2호
    • /
    • pp.103-116
    • /
    • 1994
  • In this study the behavior of engine cooling loss and overall heat transfer coefficient were studied experimentally using naturally aspirated engine and turbo charged engine. Using turbo charging, heat dissipation was increased because of the density of the mixture was increased with increment of inlet air flow rate. Therefore, cooling loss of turbo charged engine is larger than naturally aspirated engine. As taking the measurement of surface temperature of combustion chamber, gas heat transfer coefficient was calculated and found that it has greatly affected to overall heat transfer coefficient. The empirical formula of overall heat transfer coefficient established in order to predict of engine cooling loss and express only as a function of mean piston velocity.

  • PDF