• Title/Summary/Keyword: Heat Load Simulation

Search Result 249, Processing Time 0.022 seconds

The Study on Cooling Load Forecast of an Unit Building using Neural Networks

  • Shin, Kwan-Woo;Lee, Youn-Seop
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.4
    • /
    • pp.170-177
    • /
    • 2003
  • The electric power load during the summer peak time is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice storage system and heat pump system etc. are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice storage system is suggested. The method of forecasting the cooling load using neural network is also suggested. The daily cooling load is mainly dependent on actual temperature and humidity of the day. The simulation is started with forecasting the temperature and humidity of the following day from the past data. The cooling load is then simulated by using the forecasted temperature and humidity data obtained from the simulation. It was observed that the forecasted data were closely approached to the actual data.

Performance Analysis of Sensible and Latent Energy Recovery System for Thermally Controlled Facility

  • Park, Byung-Kyu;Kim, Moo-Geun;Kim, Geun-Oh
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.4
    • /
    • pp.17-26
    • /
    • 2001
  • Simulation was conducted using TRNSYS to evaluate the thermal performance of a facility. This facility has a condensing-type heat exchanger which is able to recover the latent energy for the purpose of reducing the heating energy in winter. The boiler and chiller are selected based on the annual peak loads and controlled to maintain the facility at the set temperature of 14~$17^\circ{C}$. Supplied energy by the boiler and recovered energy by the heat exchanger were calculated as a function of number of pass through heat exchanger, kind of fuel and hot water velocity. Simulation results show that about 20% of the total heating load can be recovered by the heat exchanger and the amount of latent heat is increasing with the number of pass. This means that the efficiency of the waste energy recovery system can be increased by using a condensing-type heat exchanger rather than a traditional sensible heat exchanger.

  • PDF

A Study on Rotor Eddy Current Loss and Thermal Analysis of PM Synchronous Generator for Wind Turbine (풍력터빈 PM형 동기발전기의 와전류손실과 열 해석에 관한 연구)

  • Choi, Man Soo;Chang, Young Hag;Park, Tae Sik;Jeong, Moon Seon;Moon, Chae Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1575-1581
    • /
    • 2014
  • In this paper, eddy current loss, iron loss and heat transfer of PMSG with 2,000kW capacities were analyzed for wind turbine. The PMSG with 3 split magnet was analyzed using ansoft maxwell commercial program and, generator was tested by Back to Back converter with no load condition at laboratory. Rotor surface temperature was measured by Pt100 sensors for investigating heat transfer from rotor to atmosphere. The simulation results shows 27.4kW eddy current loss in no load condition and 50.2kW eddy current loss in rated load condition with 3 split magnet, and also shows 4.3kW iron loss in no load condition and 7.3kW iron loss rated load condition. The heat transfer coefficient of convection between rotor surface and atmosphere was investigated by $9.6W/m^2{\cdot}K$. Therefore the heat transfer from rotor to atmosphere was about 17kW(54%) and from rotor to air-gap was about 14.6kW(46%) in no load condition. It is identified that the cooling system for stator have to include the 46% of iron loss, and heat dissipation structure of rotor surface have to be suggested and designed for efficiency improvement of generator.

Experimental Study on Cooling Load Forecast Using Neural Networks (신경회로망을 이용한 일일 냉방부하 예측에 관한 실험적 연구)

  • Shin, Kwan-Woo;Lee, Youn-Seop;Kim, Yong-Tae;Choi, Byoung-Youn
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.61-64
    • /
    • 2001
  • The electric power load during the peak time in summer is strongly affected by cooling load. which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice-storage system and heat pump system etc are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice-storage system is suggested. And also the method of forecasting the cooling load using neural network is suggested. For the simulation, the cooling load is calculated using actual temperature and humidity. The forecast of the temperature, humidity and cooling load are simulated. As a result of the simulation, the forecasted data approached to the actual data.

  • PDF

Analysis of Heat Flow and Thermal Stress for Divertors (디버터의 열유동 및 열응력 해석 1)

  • Lee, Sang-Yun;Kim, Hong-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.238-245
    • /
    • 1999
  • For the optimal design of plasma facing components of a fusion reactor, thorough understanding of thermal behavior of high heat. nux components are required. The purpose of this research is to investigate the characteristics of heat flow and thermal stress in divertors which are exposed to high heat load varing with time and space-Numerical simulations of heat now and thermal stress for three types of diverter are performed using finite volume method and finite element method. Respectly, commercial FLUENT code are used in the heat flow simulation, and maximum surface temperature, temperature distribution and cooling rate are calculated. Commercial ABQUS code are used for calculating temperature distribution. thermal stress, strain and displacement. Through this computer simulation. design data for cooling system and Structural provided.

  • PDF

The energy-saving effect by controlling the number of operating chillers in university facility (대학시설에 대한 열원기기 대수 운전 제어의 에너지 절약 효과)

  • Lee, Je-Hyeon;Akashi, Yasunori;Kum, Jong-Soo;Kim, Dong-Gyu
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1043-1048
    • /
    • 2009
  • This paper proposes the new operation control method that let heat source system stop and circulate only hot water at low load, and verified the introduction effect. At first, we constructed simulation model of heat source system and examined the proposing method by using simulation model. At last, we examined the introduction effect of proposing method with actual building. As a result, the primary energy consumption of heat source system was reduced by about 13%.

  • PDF

Active Solar Heating System Design and Analysis for the Zero Energy Solar House (제로에너지 솔라하우스의 난방/급탕용 태양열 시스템 설계 및 분석)

  • Baek, N.C.;Yoo, C.K.;Yoon, E.S.;Yoo, J.Y.;Yoon, J.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • This study is on the design and evaluation of Zero Energy Solar House(ZeSH) including active solar heating system. Various innovative technologies such as super insulation, passive solar systems, super window, ventilation heat recovery system...etc were analyzed by individual and combination for the success of ZeSH. The ESP-r simulation program was used for this. Simulation results shows that almost 77% of heating load can be reduced with the following configuration of 200mm super insulation, super windows, passive solar system and 0.3 ventilation rate per hour. Active solar heating system (ASHS) was designed for the rest of the heating load including hot water heating load. The solar assisted heat pump is used for the auxiliary heating device in order to use air conditioner but not included in this study. The yearly solar fraction is 87% with a solar collector area of $28m^2$. The parametric studies as the influence of storage volume and collector area on the solar fraction was analyzed.

The Effect on the Heating and Cooling Load of Building by Slat Angle Variation of Venetian Blind (베네치안 블라인드의 슬래트 각도변화가 건물의 냉난방 부하에 미치는 영향)

  • Cho, S.H.;Shin, K.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.171-183
    • /
    • 1995
  • Generally, among many kinds of shading devices such as venetian blind, sunscreen, louver and curtain, venetian blind is using widely because the mechanism is so simple and easy to use solar insolation by controlling the slat angle. Analysis of time dependent heat transfer through the window with venetian blind is very important in order to use it effectivly. Therefore, in this study, theoretical thermal analysis method was developed to analyze time dependent heat transfer through a double pane window with and without venetian blind, and was made one module of TRNSYS(A Transient Simulation Program)program. By this way, it was analyzed that how much the variation of slat angle, slat colour and slat absorptivity of venetian blind would be affected on the heating and cooling load of building, and also which colour and angle of slat was optimal for the heating and cooling load of building.

  • PDF

Performance Analysis of Sensible and Latent Energy Recovery System for Thermally Controlled Facilities (향온시설물에 대한 현열 및 잠열 에너지 회수시스템의 성능해석)

  • 박병규;김무근;김근오
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.12
    • /
    • pp.1057-1065
    • /
    • 2000
  • A sizing of sensible and latent energy recovery system with condensing heat exchanger is important to the design of a thermally controlled facilities. The transient system simulation program TRNSYS 14.2/IISiBat has been used to evaluate the energy consumptions of a thermally controlled facilities which consist of boiler, chiller and condensing heat exchanger, The boiler and chiller are selected based on the annual peak loads and controlled to maintain the setting temperature of $14~17^{\circ}C$. Simulation shows that the amount of sensible and latent energy recovered by heat exchanger is almost 20% of total heating load.

  • PDF

Validation of Extended Building Heat Transfer Model (건축전열모델의 확장에 관한 연구)

  • 조민관
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.422-431
    • /
    • 2003
  • Theory of the building heat transfer is generally limited to the heat flux to the surfaces of windows and walls, which influences the indoor climate of a building, in the field of architectural environmental engineering. While the heat flux from the buildings to their environment has been considered in the viewpoint of urban climate, its conventional theory have been rarely examined. The purpose of this study is to propose a building-urban heat transfer model for defining the relation between the building and the urban climate by extending the building heat transfer model. In this study, the extended building heat transfer model, where response factor method is used, is established on the urban space and the indoor space by the boundary of building envelopes. Computer simulation (HASP/ACLD) is conducted on the subjected urban area by the established building-urban heat transfer model. As a result it is logically proved that the short waves of solar radiation, which interact with long Waves of radiation from the buildings and the earth, increase the urban air temperature ana buildings largely influence on the urban climate.