• 제목/요약/키워드: Heat Load Characteristics

검색결과 458건 처리시간 0.039초

디젤기관에 있어서 에멀젼 연료가 연소특성에 미치는 영향 (Effects on the Characteristics of Combustion by using Emulsion Fuel in Diesel Engine)

  • 임재근;조상곤;황상진;유동훈;서장원
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.41-42
    • /
    • 2006
  • A study on the combustion characteristics by using Emulsion Fuel in Diesel Engine is performed experimentally. In this paper, the experiments are performed at engine speed 1800rpm, emulsion fuel ratio is 0%, 10%, 20%, and main measured items are specific fuel consumption, pressure, ratio of pressure rise, rate of heat release etc. The obtained conclusions are as follows. 1) Specific fuel consumption increase maximum 19.8% at low load, but is not effected at full load. 2) Ratio of pressure rise and rate of heat release are about the same in the case of 10% and 20% of emulsion fuel ratio. 3) Cylinder Pressure increase 11.7%, ratio of pressure rise increase 60.4% in case of emulsion fuel ratio 20% at full load. 4) Rate of heat release increase 76.9% in case of emulsion fuel ratio 20% at full load.

  • PDF

지열-태양열원 복합시스템의 부하추종특성에 관한 실험 연구 (An Experimental Study on the Load Delivery Characteristics of Hybrid Energy System with Geothermal and Solar Heat Sources)

  • 황인주;우남섭
    • 한국지열·수열에너지학회논문집
    • /
    • 제2권2호
    • /
    • pp.1-8
    • /
    • 2006
  • The objective of the present study is to investigate the load delivery characteristics of a hybrid-renewable energy system with geothermal and solar heat sources for hot water, heating and cooling of a residential house in Korea. The hybrid energy system consists of ground source heat pump of 2 RT for cooling with a 150 m vertical U-bend ground heat exchanger, solar collectors of 4.8 m2 and gas fired backup boiler. The averaged coefficient of performance of geothermal module during cooling and heating seasons are evaluated as about 4.5 and 3.8, respectively.

  • PDF

팁간극이 고선회각 터빈 동익 평면팁 표면에서의 열전달에 미치는 영향 (Effect of Tip Clearance Height on Heat Transfer Characteristics on the Plane Tip Surface of a High-Turning Turbine Rotor Blade)

  • 문현석;이상우
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.173-177
    • /
    • 2005
  • The heat/mass transfer characteristics on the plane tip surface of a high-turning first-stage turbine rotor blade has been investigated by employing the naphthalene sublimation technique. The heat/mass transfer coefficient is measured for four tip clearance height-to-chord ratios of h/c = 1.0%, 2.0%, 3.0%, and 4% at the Reynolds number of $2.09{\times}105$. The result shows that at lower h/c, there exists a strong flow separation/re-attachment process, which results in severe thermal load along the pressure-side comer. As h/c increases, the re-attachment is occurred further downstream of the pressure-side comer with lower thermal load. At higher h/c, a pair of vortices on the tip surface near the leading edge are found along the pressure-side and suction-side comers, and the pressure-side tip vortex have significant influence even on the mid-chord local heat transfer.

  • PDF

봄철 태양열 하이브리드 시스템의 성능특성 연구 (Study on the Performance Characteristics of Hybrid Solar Heating System during Spring Season)

  • 표종현;김원석;조홍현;박차식
    • 설비공학논문집
    • /
    • 제22권5호
    • /
    • pp.296-303
    • /
    • 2010
  • An experimental study was carried out to investigate performance characteristics of the hybrid solar system during spring season. The system operating condition, each load, and heat pump performance were analyzed with the cloud cover. As a results, the collector heat, solar fraction, and hot water load were decreased with a rise of the cloud. The heating load was considerably effected by the ambient temperature regardless of the cloud cover. Besides, the temperature of hot water increased with the solar radiation. The COP of the heat pump was significantly influenced by the ambient temperature, that was 2.09~2.46 for gray day and 1.94~2.71 for fair day, respectively.

라인-디퓨저의 ADPI특성에 관한 연구 (ADPI Characteristics of a Line-Diffuser)

  • 이재헌;조영진;강석윤;오명도
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.958-964
    • /
    • 2001
  • It is difficult to apply a conventional selection guide for diffusers when the diffuser is installed in a perimeter zone, because the ADPI(Air Diffusion Performance Index) vs. T/L(Throw/Length) curve listed in conventional guide does not consider the perimetric heating load. The objective of this study is to evaluate the effect of the perimetric heating load on the ADPI and to propose a selection guide for proper diffuser when perimetric heating load exists. The velocity and temperature distributions and the ADPI value are obtained numerically with various heat load ratios and air flow rates. The ADPI values by numerical result were compared with existing experimental data to verify the method for evaluation of ADPI proposed in present study. In case of a high side wall diffuser, the ADPI decreased with increases of the flow rate on every heat load ratio of present study except 0.75. Also, the ADPI vs. T/L curves have been proposed for the heat load ratios of 0.25, 0.5, 0.75 to guarantee comport thermal environment when diffusers are installed in perimeter zone.

  • PDF

간척지 설치 온실의 난방부하 특성 분석 (Analysis of Heating Load Characteristics for Greenhouses Constructed in Reclaimed Lands)

  • 남상운;신현호
    • 한국농공학회논문집
    • /
    • 제59권6호
    • /
    • pp.1-8
    • /
    • 2017
  • The purpose of this study was to provide basic data for development of environmental design technology for greenhouses constructed in reclaimed lands. We analyzed the climatic conditions around seven major reclaimed land areas in Korea, which have a plan to install advanced horticultural complexes. The characteristics of heating load through the thermal environment measurement of the greenhouse in Saemangeum were analyzed. The part to be applied to the environmental design of the greenhouses in reclaimed lands were reviewed. The overall heat transfer coefficient of the experimental greenhouse with the aluminum screen and multi-layer thermal curtain averaged $3.79W/m^2^{\circ}C$. It represents a 44 % heat savings rate compared with plastic greenhouses with a single covering, which was significantly lower than that of the common greenhouses with 2-layer thermal curtains. This is because the experimental greenhouse was installed on reclaimed land and wind was stronger than the inland area. Among the total heating load, the transmission heat loss accounted for 96.4~99.9 %, and the infiltration loss and the ground heat exchange were low. Therefore, it is necessary to take countermeasures to minimize the transmission heat loss for greenhouses constructed in reclaimed lands. As the reclaimed land is located on the seaside, the wind is stronger than the inland area, and the fog is frequent. Especially, Saemangeum area has 2.6 times stronger wind speed and 3.4 times longer fog duration than the inland area. In designing the heating systems for greenhouses in reclaimed lands, it is considered that the maximum heating load should be calculated by applying the wind coefficient larger than the inland area. It is reasonable to estimate the operation cost of the heating system by applying the adjustment factor 10 % larger than the average in calculating the seasonal heating load.

지열히트펌프 보조열원식 태양열 난방급탕 시스템 작동에 관한 연구 (Study on the Operation of the Solar Heating System with Ground Source Heat Pump as a Back-up Device)

  • 김휘동;백남춘;이진국;신우철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.197.2-197.2
    • /
    • 2010
  • The study on the operation characteristics of solar space and water heating system with ground source heat pump (GSHP) as a back-up device was carried out. This system, called solar thermal and geothermal hybrid system (ST/G), was installed at Zero Energy Solar House II (KIER ZeSH-II) in Korea Institute of Energy Research. This ST/G hybrid system was developed to supply all thermal load in a house by renewable energy. The purpose of this study is to find out that this system is optimized and operated normally for the heating load of ZeSH-II. Experiment was continued for seven months, from October to April. The analysis was conducted as followings ; - the contribution of solar thermal system. - the appropriateness of GSHP as a back-up device. - the performance of solar thermal and ground source heat pump system respectively. - the adaptation of thermal peak load - the operation characteristics of hybrid system under different weather conditions. Finally the complementary measures for the system simplification was referred for the commercialization of this hybrid system.

  • PDF

실내설정온도에 따른 태양열 하이브리드 열펌프 시스템 운전특성에 대한 실험적 연구 (Experimental Study on the Operating Characteristics of a Solar Hybrid Heat Pump System according to Indoor Setting Temperature)

  • 김원석;조홍현
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.50-58
    • /
    • 2010
  • Experimental study on the operating characteristics of a solar hybrid heat pump system according to indoor setting temperature were carried out during spring and winter season. The system was consisted of a concentric evacuated tube solar collector, heat medium tank, heat storage tank, and heat pump. As a result, the heating load was increased by 21.1% when the indoor setting temperature rose by 2oC for the same ambient temperature. Besides, the spring season had good outdoor conditions compared to the winter season, therefore the heating load was reduced and heat gain by collector increased, relatively. In case of the winter season, the solar fraction was shown less than 10% because the heat losses of system and space increased considerably. The solar fraction decreased significantly as the indoor setting temperature increased.

Study on load tracking characteristics of closed Brayton conversion liquid metal cooled space nuclear power system

  • Li Ge;Huaqi Li;Jianqiang Shan
    • Nuclear Engineering and Technology
    • /
    • 제56권5호
    • /
    • pp.1584-1602
    • /
    • 2024
  • It is vital to output the required electrical power following various task requirements when the space reactor power supply is operating in orbit. The dynamic performance of the closed Brayton cycle thermoelectric conversion system is initially studied and analyzed. Based on this, a load tracking power regulation method is developed for the liquid metal cooled space reactor power system, which takes into account the inlet temperature of the lithium on the hot side of the intermediate heat exchanger, the filling quantity of helium and xenon, and the input amount of the heat pipe radiator module. After comparing several methods, a power regulation method with fast response speed and strong system stability is obtained. Under various changes in power output, the dynamic response characteristics of the ultra-small liquid metal lithium-cooled space reactor concept scheme are analyzed. The transient operation process of 70 % load power shows that core power variation is within 30 % and core coolant temperature can operate at the set safety temperature. The second loop's helium-xenon working fluid has a 65K temperature change range and a 25 % filling quantity. The lithium at the radiator loop outlet changes by less than ±7 K, and the system's main key parameters change as expected, indicating safety. The core system uses less power during 30 % load power transient operation. According to the response characteristics of various system parameters, under low power operation conditions, the lithium working fluid temperature of the radiator circuit and the high-temperature heat pipe operation temperature are limiting conditions for low-power operation, and multiple system parameters must be coordinated to ensure that the radiator system does not condense the lithium working fluid and the heat pipe.

R141b를 이용한 루프 세관형 히트파이프의 열전달특성 (Heat Transfer Characteristics of Loop Type Capillary Heat Pipe using R141b as a Working Fluid)

  • 김훈;하승만;김탁용;전경환;최재혁;윤석훈
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.256-257
    • /
    • 2005
  • This paper has been carried out to investigate heat transfer characteristics of loop type capillary heat pipe using R141b as a working fluid. In an experiment heat load are changed from 50W to 250W and the temperature of cooling water is fixed to 20$^{circ}C$ . The heat pipe is composed of 10 turns and outer diameter of heat pipe is 3.2mm. The results show that heat transport rate of this type heat pipe using R141b as a working fluid is good.

  • PDF