• Title/Summary/Keyword: Heat Load

Search Result 1,728, Processing Time 0.028 seconds

Effects of Rotational Velocity on Weld Character of Inertia-Welded IN713C-SAE8630 (관성용접(慣性熔接)된 이종재질(異種材質) IN713C-SAE8630의 용접성능(熔接性能)에 회전속도(回轉速度)가 미치는 영향(影響))

  • Sae-Kyoo,Oh
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.9 no.2
    • /
    • pp.43-48
    • /
    • 1972
  • Inertia friction welding, a relatively recent innovation in the art of joining materials, is a forge-welding process that releases kinetic energy stored in the flywheel as frictional heat when two parts are rubbed together under the right conditions. In a comparatively short time, the process has become a reliable method for joining ferrous, and dissimilar metals. The process is based on thrusting one part, attached to a flywheel and rotating at a relatively high speed, against a stationary part. The contacting surfaces, heated to plastic temperatures, are forged together to produce a reliable, high-strength weld. Welds are made with little or no workpiece preparation and without filler metal or fluxes. However, In order to obtain a good weld, the determination of the optimum weld parameters is an important problem. Especially, because the amount of the flywheel mass will be determined according to the initial rotating velocity values at the constant thrust load, the initial rotating velocity is an important factor to affect a weld character of the inertia-welded IN713C-SAE8630, which is used for the wheel-shafts of turbine rotors or turbochargers, exhausting valves, etc. In this paper, the effects of initial rotational velocity on a weld character of inertia-welded IN713C-SAE8630 was studied through considerations of weld parameters determination, micro-structural observations and tensile tests. The results are as the following: 1) As initial rotating velocity was reduced to 267 FPM, cracks and carbide stringers were completely eliminated in the micro-structure of welded zone. 2) As initial rotating velocity was reduced and flywheel mass was increased correspondingly, the maximum welding temperatures were decreased and the plastic working in the weld zone was increased. 3) As initial rotating velocity was progressively decreased and carbides were decreased, the tensile strengths were increased. 4) And also the fracture location moved out of the weld zone and the tensile tests produced, the failures only in the cast superalloy IN713C which do not extend into the weld area. 5) The proper initial rotating velocity could be determined as about 250 thru 350 FPM for the better weld character.

  • PDF

Energy Performance Evaluation of a Double-skin Facade with a Venetian Blind in Residential Buildings (주거건물용 이중외피 시스템의 블라인드 조절에 따른 에너지 성능평가에 관한 연구)

  • Lee, So-Yeun;Kang, Jae-Sik;Kim, Kang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.1-9
    • /
    • 2010
  • Apartment balcony has been remodeled since the government permitted remodeling in January 2006.But extended balcony has great impact on building heat gain and loss. Therefore It has problems such as increase of heating and cooling energy. So $\underline{t}echnical$ solutions about window solar gain in summer is an urgent matter. The Purpose of this study is to evaluate energy performance of a blind in a double-skin facade in residential buildings by using EnergyPlus program. The results show that slat angles of $90^{\circ}$ is best in energy performance if we do not consider daylight. Poorly daylighted living room needs electric light and it also causes high cooling load. On the other hand, the results show that the application of blinds controlled automatically is best for energy performance when we consider daylight. Blind slat angles of $50\sim60^{\circ}$ have best performance when blinds are controlled in this angle throughout the day on a clear day in August. Blind slat angles of $0\sim30^{\circ}$ have best performance when blinds $\underline{are\;controlled}$ in this angle throughout the day on a cloudy day (more than 7 of total sky cover) in August.

An Assessment of Energy Consumption in Steam-Humidification- and Water-Spray-Humidification-Type Outdoor Air Conditioning Systems for Semiconductor Manufacturing Clean Rooms (반도체 클린룸용 증기가습 및 수분무가습 외기공조시스템의 에너지소비량 평가)

  • Kim, Ki-Cheol;Song, Gen-Soo;Kim, Hyung-Tae;Yoo, Kyung-Hoon;Shin, Dae-Kun;Park, Dug-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.2
    • /
    • pp.55-63
    • /
    • 2013
  • For a large-scale semiconductor manufacturing clean room, the energy consumed in an outdoor air conditioning system to heat, humidify, cool and dehumidify incoming outdoor air is very large. In particular, the energy requirement to humidify outdoor air in the winter season is generally known to be high. Recently, in order to overcome the high energy consumption nature of a steam generator in a conventional steam humidification type outdoor air conditioning system, an air washer is often introduced instead of the steam generator in the outdoor air conditioning system, which can be called a water spray humidification type outdoor air conditioning system. Therefore, the assessment and comparison of the annual energy consumed in the steam humidification type and the water spray humidification type outdoor air conditioning systems deserves to be examined in order to reduce the outdoor air conditioning load of a clean room. In the present study, a numerical analysis was conducted to obtain the annual electric power consumption of the two outdoor air conditioning systems. It was shown from the comparison of the numerical results that the water spray humidification type outdoor air conditioning system can reduce about 30% of annual electric power consumption of the steam humidification type outdoor air conditioning system.

A Study on the Effects of Hydrogen Addition and Swirl Intensity in CH4-Air Premixed Swriling Flames (메탄-공기 예혼합 선회화염에서 수소첨가와 선회강도 영향에 관한 연구)

  • KIM, HAN SEOK;CHO, JU HYEONG;KIM, MIN KUK;HWANG, JEONGJAE;LEE, WON JUNE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.593-600
    • /
    • 2019
  • The combustion characteristics of methane/hydrogen pre-mixed flame have been investigated with swirl stabilized flame in a laboratory-scale pre-mixed combustor with constant heat load of 5.81 kW. Hydrogen/methane fuel and air were mixed in a pre-mixer and introduced to the combustor through a burner nozzle with different degrees of swirl angle. The effects of hydrogen addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using particle image velocimetry (PIV), micro-thermocouples, various optical interference filters and gas analyzers to provide information about flow velocity, temperature distributions, and species concentrations of the reaction field. The results show that higher swirl intensity creates more recirculation flow, which reduces the temperature of the reaction zone and, consequently, reduces the thermal NO production. The distributions of flame radicals (OH, CH, C2) are dependent more on the swirl intensity than the percentage of hydrogen added to methane fuel. The NO concentration at the upper part of the reaction zone is increased with an increase in hydrogen content in the fuel mixture because higher combustibility of hydrogen assists to promote faster chemical reaction, enabling more expansion of the gases at the upper part of the reaction zone, which reduces the recirculation flow. The CO concentration in the reaction zone is reduced with an increase in hydrogen content because the amount of C content is relatively decreased.

A Evaluation on the Field Application of High Strength Concrete for CFT Column (고강도 CFT용 콘크리트의 현장적용성 평가 및 장기거동 예측)

  • Park, Je Young;Chung, Kyung Soo;Kim, Woo Jae;Lee, Jong In;Kim, Yong Min
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.707-714
    • /
    • 2014
  • CFT (Concrete-Filled Tube) is a type of steel column comprised of steel tube and concrete. Steel tube holds concrete and the concrete inside tube takes charge of compressive load. This study presents structural performance of the CFT column which has 73~100 MPa high strength concrete inside. Fluidity, mechanical compression, pump pressure test in flexible pipe were conducted for understanding properties of the high strength concrete. Material properties were achieved by various experimental tests, such as slump, slump flow, air content, U-box, O-Lot, L-flow. In addition, mock-up tests were conducted to monitor concrete filling, hydration heat, compressive strength. From construction sites in Sang-am dong and University of Seo-kang, long-term behaviors could be effectively predicted in terms of ACI 209 material model considering elastic deformation, shrinkage and creep.

Improvement Effects of Soft Ground from Quick Lime Piles (생석회 말뚝에 의한 연약지반의 개량 효과)

  • Chun, Byung-Sik;Ko, Kab-Soo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.91-101
    • /
    • 2001
  • This paper investigates the effectiveness of quick lime piles for soft ground improvement. The field tests based on the results of the laboratory test were performed, and the results of field tests were compared with those of numerical analyses(FEM). The results of the field test showed that the domestic quick lime was very effective in reducing the water contents of the surrounding ground quickly due to its characteristics such as digestion, absorption, and exothermic reactions. Accordingly, consolidation occurred without any additional load increment and the shear strength of surrounding ground was increased more than twice. Therefore the quick lime pile method could be considered as an excellent improvement technique reducing the improvement period for soft ground. For the practical applications of the quick lime pile method, issues such as hydration heat, particulation and equipment enhancement should be solved through continuous research and development.

  • PDF

Evaluation of Machining Characteristics and Performance Analysis of Air-Lubricated Dynamic Bearing (공기동압베어링의 성능 해석 및 가공특성 평가)

  • Baek, Seung-Yub;Kim, Kwang-Lae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5412-5419
    • /
    • 2011
  • The need is growing for high-speed spindle because various equipment are becoming more precise, miniaturization and high speed with the development of industries. Air-lubricated dynamic bearings are widely used in the optical lithographic manufacturing of wafers to realize nearly zero friction for the motion of the stage. Air-lubricated dynamic bearing can be used in high-speed, high-precision spindle system and hard disk drive(HDD) because of its advantages such as low frictional loss, low heat generation, averaging effect leading better running accuracy. In the paper, numerical analysis is undertaken to calculate the performance of air-lubricated dynamic bearing with herringbone groove. The static performances of herringbone groove bearings which can be used to support the thrust load are calculated. Electrochemical micro machining($EC{\mu}M$) which is non-contact ultra precision machining method has been developed to fabricate the air-lubricated dynamic bearing and optimum parameters which are inter electrode gap size, concentration of electrolyte, machining time are simulated using numerical analysis program.

FIRES IN REAL SCENARIOS

  • Ghosh, B-K
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.439-449
    • /
    • 1997
  • Studies have been carried out to determine the effect of sprinklers on fires typical of a number of occupancies including simulated of office furniture, supermarkets, carpet displays, libraries, video stores and liquor stores. After surveys of actual fire loads, the experiments were conducted in a specially designed sprinklered fire-calorimeter with a collecting hood 6 m x6 m leading to a vertical duct 1 m in diameter. Details of the rig are given elsewhere [1]. Only well ventilated fires were studied. Rate of heat release and production of various toxic chemicals were monitored during the tests. Both sprinklered and unsprinklered fires were used. The results were used to establish the unsprinklered burning behaviour and the fire-control effects of sprinklers. Before sprinkler operation, the rate of fire growth could be modelled as 12_fires as given in NFPA 92B (1991 Edition) [2]. It was found that operation of sprirnklers controlled but did not extinguish the fires. This was expected as parts of the fire load were shielded from the spray. Also there were significant increases in the concentration of carbon monoxide when the sprinklers operated. Sprinklers had little effect on the concentrations of other toxic products measured. The results from the tests were extrapolated to large single storey buildings for the same occupancy classes and the results used to compare the required and the available escape times for different occupancies, particularly whether the use of sprinklers would improve the chances of escape from those premises. It was found that in most of the cases studied, adequate escape times will be available without any special measures. For very rapid fire growths, however, special measures, such as availability of trained staff may be needed. Standard response sprinklers will have little impact.

  • PDF

Analysis of Furnace Conditions with Waste Plastics Injection into Blast Furnace (폐플라스틱의 吹入에 따른 高爐 爐況解析)

  • 허남환;백찬영;임창희
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.23-30
    • /
    • 2000
  • Since most of the waste plastics are incinerated and landfilled for the plastic treatment, the environmental friendly processes must be introduced. The plastic utilization of plastic to the blast furnace as a substitutional fuel was developed as a useful recycling method of waste plastics, and commercialized in several ironmaking company in Europe and Japan. Present study was carried out to understand the effect of plastic injection on blast furnace process continuously by using the foundry blast furnace in POSCO. The coke replacement ratio turned out to be 0.98 with the waste plastic injection up to 13.8 kg/thm of injection rate, and there were no significant effect of the kinds of injection plastics on the replacement ratio in this test operation. The permeability in the furnace became worse and the heat load in the lower part of blast furnace was increased with increasing the injection rate of waste plastics. As the rate of plastic injection were increased, the top gas utilization and shaft efficiency were also decreased from the Rist diagram analysis.

  • PDF

Experimental Study for Thermal Performance of Hybrid Air-Water Heater Using Solar Energy during Heating Medium Working Simultaneously (복합형 태양열 가열기 열매체 동시운전시의 열적 성능에 관한 실험적 연구)

  • Choi, Kwang-Hwan;Yoon, Jung-In;Son, Chang-Hyo;Choi, Hwi-Ung;Kim, Bu-Ahn
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.115-121
    • /
    • 2014
  • With increment on interesting about improving renewable energy efficiency, many research have been conducted and the research about hybrid air-water heater using solar energy that can make heating air and hot water has been conducted also. In this experiment, the temperature difference and thermal efficiency were investigated when two heating medium(air and liquid) was working simultaneously. As a result, thermal efficiency showed 44% to 88% when these heating medium was working simultaneously depending on operation condition and it is better than traditional solar collector. Also possibility of application into building equipment also was confirmed based on temperature and thermal efficiency. But necessity of additional studies about proper operation condition according to purpose of use and heat load was confirmed because change of thermal efficiency by air velocity and flux of liquid was shown a huge difference.