• Title/Summary/Keyword: Heat Island Effects

Search Result 119, Processing Time 0.032 seconds

A Study on Statistical Downscaling for Projection of Future Temperature Change simulated by ECHO-G/S over the Korean Peninsula (한반도 미래 기온 변화 예측을 위한 ECHO-G/S 시나리오의 통계적 상세화에 관한 연구)

  • Shin, Jinho;Lee, Hyo-Shin;Kwon, Won-Tae;Kim, Minji
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.107-125
    • /
    • 2009
  • Statistical downscaled surface temperature datasets by employing the cyclostationary empirical orthogonal function (CSEOF) analysis and multiple linear regression method are examined. For evaluating the efficiency of this statistical downscaling method, monthly surface temperature of the ECMWF has been downscaled into monthly temperature having a fine spatial scale of ~20km over the Korean peninsula for the 1973-2000 period. Monthly surface temperature of the ECHOG has also been downscaled into the same spatial scale data for the same period. Comparisons of temperatures between two datasets over the Korean peninsula show that annual mean temperature of the ECMWF is about $2^{\circ}C$ higher than that of the ECHOG. After applying to the statistical downscaling method, the difference of two annual mean temperatures reduces less than $1^{\circ}C$ and their spatial patterns become even close to each other. Future downscaled data shows that annual temperatures in the A1B scenario will increase by $3.5^{\circ}C$ by the late 21st century. The downscaled data are influenced by the ECHOG as well as observation data which includes effects of complicated topography and the heat island.

A Numerical Simulation for Thermal Environments by the Modification of Land-use in Busan (부산지역 토지이용(land-use) 변화에 의한 열환경 수치모의)

  • 김유근;문윤섭;오인보;임윤규
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.6
    • /
    • pp.453-463
    • /
    • 2002
  • Prognostic meteorological model, MM5V3 (Mesoscale Model 5 Version 3) was used to assess the effects of the land-use modifications on spatial variations of temperature and wind fields in Busan during the selected period of summer season in 2000. We first examined sensitivity analysis for temperature between MM5V3 predictions and meteorological data observed at 4 AWS (Automatic Weather System) stations in Busan, which exhibited low structural and accurate errors (Mean Bias Error, MBE: 0.73, Root Mean Square Error, RMSE: 1.18 on maximum). The second part of this paper, MMSV3 simulations for the modification of land-use was performed with 1 km resolution in target domain, 46$\times$46 $\textrm{km}^2$ area around city of Busan. It was found that modification result from change of surface land-use in central urban area altered spatial distributions of temperature and wind. In particular, heat island core moved slightly to the seaward at 1300 LST. This results may imply that modification of surface land-use leads to change the thermal environments; in addition, it has a significant effect on local wind circulations and dispersions of air pollutants.

Study on Energy Saving Possibilities through Analysis of Environment Control Elements & Natural Ventilation Performance using the CFD & Measurement (CFD와 실측을 이용한 환경제어요소 도입 및 주택 자연환기 성향 검토를 통한 에너지 절감가능성 고찰)

  • Oh, Byoungchull;Lee, Sunyoung
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.27-37
    • /
    • 2014
  • Heat island is caused by changes of land coverage structure of cities and use of energy in buildings. As a result energy use in buildings get to increase further followed by rising of GHG emission and deteriorating climate change. Eco-friendly housing complex is a kind of plan that applies environmental control elements like water and green spaces to housing complex. With these methods, it can be expected to create thermal environment of indoor and outdoor. In this paper quantitative examination is studied on using CFD to find out the effects of river, water permeable, parks and planting on thermal environment. And by comparing field measurements with CFD results which are aimed to development phase housing complex, feasibility and usability of the CFD analysis results are confirmed. And also, analysis on the ventilation performance followed by natural ventilation system is analyzed by selecting one building in housing complex. Based on the results, the possibilities of energy reduction through making thermal environment and applying natural ventilation are studied. With these outcomes, creating thermal conditions and using natural ventilation would be contributed to GHG reduction.

Vulnerability Assessment to Urban Thermal Environment for Spatial Planning - A Case Study of Seoul, Korea - (공간계획 활용을 위한 도시 열환경 취약성 평가 연구 - 서울시를 사례로 -)

  • Eum, Jeong-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.4
    • /
    • pp.109-120
    • /
    • 2016
  • This study aims to assess vulnerability in urban thermal environments of Seoul by using indicators frequently used in previous studies as well as effective indicators for spatial planning like urban and environmental planning. For this purpose, fifteen indicators that influence urban thermal environments such as heat waves, urban heat island effects, and urban micro-climates were identified based on literature reviews. Indicators for presenting urban structure and spatial properties were included; for example, building volume as 'exposure to climate', buildings completed before 1980 as 'sensitivity', and green space areas as 'adaptive capacity'. Among them, twelve indicators were applied to assess vulnerability in urban thermal environments of Seoul by using a GIS spatial analysis combined with fuzzy logic. The results show that the Gangnam area is identified as more vulnerable to a heat environment as compared to the Gangbuk area. In the Gangnam area, Seocho-gu, Gangnam-gu, Dongjak-gu, Yeongdeungpo-gu, Gangseo-gu were relatively high in vulnerability, while Dongdaemun-gu, Gangbuk-gu, Gwangjin-gu, Jungrang-gu were relatively high in the Gangbuk area. Gwanak-gu, Dobong-gu, Eunpyeong-gu, and Nowon-gu, which include forested areas, have low vulnerability in the sectors of 'exposure to climate' and 'sensitivity' due to the impact of Gwanaksan and Bukhansan. However, some areas with high vulnerability like Seocho-gu and Gangnam-gu may have lower vulnerability if the indicator 'status of air conditioning' from the sector of 'adaptive capacity' is used. This study could support the establishment of a practicable thermal environment policy and spatial planning to reduce heat-related risks in the field of urban and environmental planning.

Effects of Preferential Diffusion on Downstream Interaction in Premixed $H_2$/CO Syngas-air Flames (상호작용하는 $H_2$-CO 예혼합 화염에서 $H_2$선호확산의 영향에 관한 수치적 연구)

  • Oh, Sanghoon;Park, Jeong;Kwon, Ohboong
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.3
    • /
    • pp.17-29
    • /
    • 2012
  • The effects of strain rate and preferential diffusion of $H_2$ on flame extinction are numerically studied in interacting premixed syngas-air flames with fuel compositions of 50% $H_2$ + 50% CO and 30% $H_2$ + 70% CO. Flame stability diagrams mapping lower and upper limit fuel concentrations at flame extinction as a function of strain rate are examined. Increasing strain rate reduces the boundaries of both flammable lean and rich fuel concentrations and produces a flammable island and subsequently even a point, implying that there exists a limit strain rate over which interacting flame cannot be sustained anymore. Even if effective Lewis numbers are slightly larger than unity on extinction boundaries, the shape of the lean extinction boundary is slanted even at low strain rate, i.e. $a_g=30s^{-1}$ and is more slanted in further increase of strain rate, implying that flame interaction on lean extinction boundary is strong and thus hydrogen (as a deficient reactant) Lewis number much less than unity plays an important role of flame interaction. It is also shown that effects of preferential diffusion of $H_2$ cause flame interaction to be stronger on lean extinction boundaries and weaker on rich extinction boundaries. Detailed analyses are made through the comparison between flame structures with and without the restriction of the diffusivities of $H_2$ and H in symmetric and asymmetric fuel compositions. The reduction of flammable fuel compositions in increase of strain rate suggests that the mechanism of flame extinction is significant conductive heat loss from the stronger flame to ambience.

Estimation of the Temporal and Spatial Variation of Surface Temperature Distribution in the Korean Peninsula using NOAA/AVHRR Data (NOAA/AVHRR 위성자료를 이용한 한반도 표면온도의 시공간적 변동 추정)

  • Suh, Young-Sang;Lee, Gi-Chul;Lee, Na-Kyung;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.3
    • /
    • pp.150-160
    • /
    • 2005
  • In this study, the spatiotemporal surface temperature changes were analyzed in the Korean peninsula. The surface temperature variation was estimated using the split window method and NOAA/AVHRR data in 1991, 1995 and 2000. The ranges of differences in temperature between day time and night time were $3-15^{\circ}C$ around the peninsula. The differences in seasonal variations and yearly fluctuations in big cities were lower than those in rural areas and showed clearly the effects of the urbanization. The characteristics of urban heat affects were further determined based on the day and night time temperature comparison on Busan metropolitan area between these periods. Finally, the future use of this technology was suggested for the urban environmental planning.

  • PDF

Characteristics of Air Temperature Variations under Different Land Covers during Summer (여름철 토지피복별 기온변화 특성)

  • Kim, Jin-Soo;Park, Jong-Wha;Jung, Gu-Young;Oh, Kwang-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.1
    • /
    • pp.79-88
    • /
    • 2007
  • We investigated the characteristics of temperature variations under different land covers (paddy field, upland, urban park, and urban residential area) during hot summer (July 15 to August 19, 2005). The temperatures were monitored using data loggers at one hour intervals in study sites. The mean temperature generally increased with the distance from edge of paddy fields, being $1.5^{\circ}C$ higher at a site 170-m far from paddy fields than at a paddy field area at 22 h. The mean daily temperatures in the study period followed the ordo. of paddy field $(26.6^{\circ}C)$ < upland $(27.0^{\circ}C)$ < park $(27.5^{\circ}C)$ < residential area $(28.0^{\circ}C)$. The paddy field area has shown remarkable cooling effects compared to the residential area: Mean duration of temperature below $25^{\circ}C$ in the paddy field area was longer (8.6 hrs) than in the residential area; The time to fall to below $25^{\circ}C$ in the paddy field area was sooner (22.4 hr) than in the residential area; Mean daily minimum temperature in the paddy field area was much lower $(2.4^{\circ}C)$ than in the residential area. More research is needed to better clarify the mechanism of cooling effect of a paddy field area by investigating heat balance of a paddy field.

The Effects of Urban Stream Improving the Thermal Environment on Urban (도심하천이 도시 열 환경 완화에 미치는 영향)

  • Park, Jin-Ki;Park, Jong-Hwa;Na, Sang-Il;Beak, Shin-Chul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.760-760
    • /
    • 2012
  • 도심 지역은 인구집중, 토지 피복의 변화 및 교통량 증가 등의 인공열 배출원의 다양화 등의 요인에 의해 주변지역보다도 기온이 높은 도시 열섬(Urban Heat Island) 현상에 의해 독특한 도시기후의 특색을 보이게 된다. 일반적으로 도시 열 환경에 대한 연구는 도시 열섬의 강도나 현상을 파악하는데 집중되어 왔다. 최근 들어 도시 열섬 현상 완화 또는 개선을 위한 관심이 높아지면서 도시내에 존재하는 수면이나 녹지를 이용한 기후개선에 대한 연구가 진행되고 있다. 하천은 다양한 생물이 서식하는 공간이면서 생물의 다양성이 풍부한 생태계의 보고로 인간과 환경이 조화를 이루어 온 공간이기도 하다. 이와 같이 하천은 지역의 다양성과 특수성에 따라 가지고 있는 기능이 다양하다. 그 중 하천의 환경 기능은 많은 열용량을 축적시켜 수면의 온도상승을 적게 하여 하천의 온도는 물론 주변지역의 온도를 낮추는 역할을 하게 된다. 특히 흐르는 물은 대류와 혼합과정을 거치며 열을 운반할 수 있으므로 효율적인 축열체가 된다. 또한 하천의 물 등은 광의 투과성이 높기 때문에 표면에서는 반사되지 않고 수체 내에 열을 저장한다. 따라서 이러한 현상이 종합적으로 작용하여 도심하천은 도심지에서 높게 형성된 온도를 낮추는 냉각효과가 있다고 판단된다. 이러한 영향을 알아보기 위해 본 연구에서는 원격탐사 기법을 이용하여 도심하천이 도시 열완경 완화에 미치는 영향을 분석하였다. 분석을 위해 2009년 9월 6일 Landsat 7 ETM+ 위성영상을 이용하여 LST (Land Surface Temperature)를 추출하고, SEBAL (Surface Energy Balance Algori- thms for Land) 모델을 이용하여 지표면 열수지 성분을 추출하였다. 그 결과, 도심하천 주변의 온도가 도심지에 비해 $2{\sim}3^{\circ}C$ 정도 낮게 형성되었으며, 잠열은 주변 도심지에 비해 하천에서 높은 분포를 나타내었다. 그러나 하천 둔치나 하천 주변의 콘크리트, 아스팔트 및 나대지 등의 토지피복은 지표면 온도가 높게 형성되어 도심의 heat spot으로 작용하여 열 환경을 악화시키나 도심하천은 cool spot 작용을 하여 도심의 열을 완화하는 기능을 갖는 것으로 판단된다.

  • PDF

A Study on the Convergence of Renovation Measures for Urban Ecological Park Considering the Thermal Environment in Summer - With a Case of Gildong Ecological Park - (여름철 열환경을 고려한 도시생태공원 리노베이션 방안 융합 연구 - 길동생태공원을 사례로 -)

  • Kwon, Ki Uk
    • Korea Science and Art Forum
    • /
    • v.36
    • /
    • pp.11-22
    • /
    • 2018
  • This study recent changes in urban thermal environment caused by climate change generate diverse problems such as urban heat island effects, heat wave, and drought. Under this condition, with the increased perception and expectation of the quality of life, the urban citizens' desire for outdoor activities is increasing. This study conducted the thermal environment analysis focusing on the urban ecological park used by many urban citizens, and also suggested the renovation measures for urban ecological park considering the thermal environment. As the research site, the ecologically-favorable Gildong Ecological Pak with diverse space composition was selected. The measuring items were measured and analyzed by dividing them into thermal environment index and thermal comfort index. In the results of analysis in each type of park space, the forest zone showed the most favorable result. Based on such results, total three kinds of renovation measures for urban ecological park considering the thermal environment were suggested. Through this, the urban ecology park renovation plans were presented in three ways. The results of this study are meaningful in that it can be used as a base material for creating an ecological park considering the thermal environment.

Effects of Annealing Temperature on Interface Properties for Al/Mild Steel Clad Materials (어닐링 온도 변화가 Al/연강 클래드재의 계면 특성에 미치는 영향)

  • Jeong, Eun-Wook;Kim, Hoi-Bong;Kim, Dong-Yong;Kim, Min-Jung;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.591-597
    • /
    • 2012
  • For heat exchanger applications, 2-ply clad materials were fabricated by rolling of aluminum (Al) and mild steel sheets. Effects of annealing temperature on interface properties, especially on inter-layer formation and softening of strain hardened mild-steel, for Al/mild steel clad materials, were investigated. To obtain optimum annealing conditions for the Al/mild steel clad materials, annealing temperature was varied from room temperature to $600^{\circ}C$. At the annealing temperature about $450^{\circ}C$, an inter-layer was formed in an island-shape at the interface of the Al/mild steel clad materials; this island expanded along the interface at higher temperature. By analyzing the X-ray diffraction (XRD) peaks and the energy dispersive X-ray spectroscopy (EDX) results, it was determined that the exact chemical stoichiometry for the inter-layer was that of $Fe_2Al_5$. In some samples, an X-layer was formed between the Al and the inter-layer of $Fe_2Al_5$ at high annealing temperature of around $550^{\circ}C$. The existence of an X-layer enhanced the growth of the inter-layer, which resulted in the delamination of the Al/mild-steel clad materials. Hardness tests were also performed to examine the influence of the annealing temperature on the cold deformability, which is a very important property for the deep drawing process of clad materials. The hardness value of mild steel gradually decreased with increasing annealing temperature. Especially, the value of hardness sharply decreased in the temperature range between $525^{\circ}C$ and $550^{\circ}C$. From these results, we can conclude that the optimum annealing temperature is around $550^{\circ}C$ under condition of there being no X-layer creation.