• Title/Summary/Keyword: Heat Island Effects

Search Result 119, Processing Time 0.028 seconds

Analysis of Passive Cooling Effect of the Tree by Field Observations in the Summer (하절기 단일 수목의 열 환경 관측을 통한 서열완화 효과 해석)

  • Choi, Dong-Ho;Lee, By-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.109-118
    • /
    • 2006
  • The tree is regarded as an sustainable architectural outdoor design element which reduce urban heat island effect by its solar shading and evapotranspiration. This study carried out field observations of measuring thermal environment of selected tree and its ambience to determine passive cooling effects. Results from the field observations are as below; Tree-shading effect to the thermal environment can not be properly evaluated by merely measuring air temperature differences between tree-shaded space and unshaded space for the maximum temperature difference is less than $1.5^{\circ}C$. The differences of longwave radiation and shortwave radiation between tree-shaded space and unshaded space are measured. Shortwave radiation is considered as a main thermal comfort determining factor for the difference of the shortwave radiation is much bigger than that of longwave radiation. By thermal infrared image analysis, the surface temperature of the tree under strong solar radiation is measured same as ambient air temperature. By which the evapotranspiration is considered to retard tree surface temperature raising effectively.

Simulation of Changes in Nearby Thermal Environment According to Green Roof in Low-Rise Residential Area of Daegu (대구광역시 저층주거지역의 옥상녹화 조성에 따른 주변 열환경 변화 모의실험)

  • Kim, Dae-Wuk;Jung, Eung-Ho;Cha, Jae-Gyu
    • Journal of the Korean housing association
    • /
    • v.24 no.3
    • /
    • pp.45-53
    • /
    • 2013
  • It is important to secure green spaces to solve the urban heat island phenomenon, which is among problems resulted by high-density developments in metropolitan areas. However, it is hard to secure such green spaces in established urban areas so Green Rooftop development approaches have recently been highlighted and introduced as a solution to the situation. The present study conducts a simulation on residential areas in urbanized regions to quantitatively evaluate the effects of green rooftop developments through a comparison of changes in the air temperatures before and after relevant development projects. According to the evaluation results, when the green roof top development is conducted in the available areas, the temperature is reduced by 0.14 degree. The extension of green project to the entire building showed the reduction of the temperature by 0.29 degree. Based on these results, it can be concluded that the green rooftop development is a practically solution for reducing the air temperature of urbanized areas.

The Effects of δ-ferrite on Weldment of 9-12% Cr Steels (9-12% Cr강의 용접부에 미치는 δ-ferrite의 영향)

  • Ahn, Sung-Yong;Kang, Namhyun
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.8-16
    • /
    • 2013
  • As the energy consumption increases rapidly, power generation needs the high energy efficiency continuously. To achieve the high efficiency of power generation, the materials used have to endure the higher temperature and pressure. The 9-12%Cr steels possess good mechanical properties, corrosion resistance, and creep strength in high temperature due to high Cr contents. Therefore, the 9-12%Cr steels are widely used for the high-temperature components in power plants. Even though the steels usually have a fully martensitic microstructure, they are susceptible to the formation of ${\delta}$-ferrite specifically during the welding process. The formation of ${\delta}$-ferrite has several detrimental effects on creep, ductility and toughness. Therefore, it is necessary to avoid its formation. As the volume fraction of ${\delta}$-ferrite is less than 2% in microstructure, it has the isolated island morphology and causes no significant degradation on mechanical properties. For ${\delta}$-ferrite above 2%, it has a polygonal shape affecting the detrimental influence on the mechanical properties. The formation of ${\delta}$-ferrite is affected by two factors: a chemical composition and a welding heat input. The most effective ways to get a fully martensite microstructure are to reduce the chromium equivalent less than 13.5, to keep the difference between the chromium and nickel equivalent less than 8, and to reduce the welding heat input.

Exploration of Optimal urban green space using unused land - To improve green connectivity and thermal environment - (유휴지를 활용한 최적의 도시 녹지 공간 탐색 - 녹지연결성과 열 환경 개선을 목적으로 -)

  • Kim, Eun-Sub;Lee, Dong-Kun;Yoon, Eun-Joo;Park, Chae-Yoen
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.5
    • /
    • pp.45-56
    • /
    • 2019
  • Urban green areas are generally composed of relatively small and fragmented patches, but it is a critical factor for the quality of an urban environment. They have positive effects such as increasing green connectivity, reducing runoff, and mitigating urban heat. But, there is a lack of urban greening plans that consider the comprehensive effects of green space in real urban areas. To fill this gap in this literature, this study identifies a planning model that determines the optimal locations for maximizing green areas' multiple effects(e.g., heat mitigation and enhancement of connectivity) by using unused lots. This model also considers minimizing costs using meta-heuristic optimization algorithms. As a results, we finds 50 optimal plans that considers two effects within the limited cost in Nowon-gu. The optimal plans show the trade-off effect between connectivity, heat mitigation and cost. They also show the critical unused land lots for urban greening that are commonly selected in various plans. These optimal plans can effectively inform quantitative effectiveness of green space and their trade-off. We expect that our model will contribute to the improvement of green planning processes in reality.

A Study on Monitoring to Investigate Dynamic Temperature Model by Sensible Heat Flux of Green Roof System (옥상녹화시스템의 현열유동에 따른 동적온도모형 검증을 위한 모니터링 연구)

  • Park, Eun-hee;Kim, Tae-han;Park, Sang-yeon;Jang, Seong-wan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.6
    • /
    • pp.15-25
    • /
    • 2015
  • The growth of impermeable layers in the city center due to today's urban development is emerging as a major cause of urban heat island effects as well as recurring inland flood damages. In order to cope with such disasters caused by climatic changes, an artificial ground afforestation system is suggested as a fundamental solution that addresses both water environment and heat environment. For the afforestation system to replace the current disaster prevention facilities, quantitative performance verification through related numerical analysis models and actual survey monitoring is necessary. Therefore, this study seeks to propose the performance predication method for the heat environment of the afforestation system by looking into correlations between measurements by physical vegetation indicators such as LAI and FVC and forecasts from FASST, a vegetation canopy model used by US Corps of Engineers.

Changes in Plant Species on a Grass Roof over Time (초지지붕에서의 시간경과에 따른 식생변화)

  • Lee, Young-Moo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.6 s.119
    • /
    • pp.39-53
    • /
    • 2007
  • Unlike conventional roof landscaping, where various kinds of plants and structures are employed, a grass roof is a roof on which herbaceous plants are grown in planting medium and which is not accessed or maintained, mainly because it doesn't have sufficient load capacity to support a regular roof garden. They are mostly built on existing roofs, whether flat slab or gabled. Planting on roofs has numerous advantages, such as creating a biotope, purifying urban air, adding moisture to the atmosphere, storing rain water, preventing flash floods, reducing energy use for heating and air conditioning, enhancing the urban landscape and providing relaxation to the city dwellers, not to mention the alleviation of global warming by absorbing $CO_2$. In addition to the general merits of roof planting, the grass roof has its own unique qualities. Only herbaceous species are planted on the roof, resulting in light weight which allows roofs of existing buildings to be planted without structural reinforcement. The species chosen are mostly short, tough perennials that don't need to be maintained. These conditions provide an ideal situation where massive planting can be done in urban areas where roofs are often the only and definitely the largest space available to be planted. If roofs are planted on a massive scale they can play a significant role in alleviating global warming, heat island effects and energy shortages. Despite the advantages of grass roofs, there are some problems. The most significant problem is the invasion of neighboring plants. They may be brought in with the planting medium, by birds or by wind. These plants have little aesthetic value comparing to the chosen species and are usually taller. Eventually they dominate and prevail over the original species. The intended planting design disappears and the roof comes to look wild. Since the primary value of a grass roof is ecological, a change in attitude towards what constitutes beauty on the roofscape is necessary. Instead of keeping the roof neat through constant maintenance, people must learn that the wild grass with bird's nests on their roof is more beautiful as it is.

A Comparison of the Impact of Regional Anthropogenic Climatic Change in Urban and Rural Areas in South Korea (1955-2016) (최근 60년간 도시 및 농촌 지역의 국지적 기후변화 비교 분석)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Hong, Eun-Mi;Kim, Taegon;Ho, Chang-Hoi;Hayes, Michael J.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.3
    • /
    • pp.37-50
    • /
    • 2018
  • Local climate characteristics for both urban and rural areas can be attributed to multiple factors. Two factors affecting these characteristics include: 1) greenhouse gases related to global warming, and 2) urban heat island (UHI) effects caused by changes in surface land use and energy balances related to rapid urbanization. Because of the unique hydrological and climatological characteristics of cities compared with rural and forested areas, distinguishing the impacts of global warming urbanization is important. In this study, we analyzed anthropogenic climatic changes caused by rapid urbanization. Weather elements (maximum temperature, minimum temperature, and precipitation) over the last 60 years (1955-2016) are compared in urban areas (Seoul, Incheon, Pohang, Daegu, Jeonju, Ulsan, Gwangju, Busan) and rural/forested areas (Gangneung, Chupungnyeong, Mokpo, and Yeosu). Temperature differences between these areas reveal the effects of urbanization and global warming. The findings of this study can be used to analyze and forecast the impacts of climate change and urbanization in other urban and non-urban areas.

Effects of Land Use Pattern on Urban Heat Island in Chungju City (토지이용형태가 도시열섬현상에 미치는 영향 - 충주시를 사례로 -)

  • Yoon, Yong-Han;Bae, Byung-Ho;Kim, Won-Tae;Park, Bong-Ju;Cho, Sung-Moh;Cho, Hyun-Soo
    • Journal of Environmental Science International
    • /
    • v.16 no.9
    • /
    • pp.1063-1069
    • /
    • 2007
  • The present study investigated the causes and intensity of the urban heat island phenomenon by the seasons according to the pattern of land use in Chungju City. Highest temperature and lowest moisture areas of the urban were very similar to the distribution of commercial districts, on the other hand, lowest temperature and highest moisture areas were distributed in manufacturing districts, green zones and the Hoam Lake. If appear at intensity of the distance from the outer circumference of commercial districts, wind direction and the rise of temperature, we could observe the remarkable expansion of high temperature from commercial districts toward residential districts around of downwind in all seasons. In case the effect of the wind was not significant as well, high temperature in commercial districts appeared tendency that a little spread to 1, 2 residential districts around. But checked up the intimate relations between the amount of moving heat and wind, when out of consideration that size of area was not much compared than residential areas of downwind affected by the wind. These phenomenon was relatively obvious in summer, the other side, in spring and autumn appeared a similar tendency.

Change of Thermal Environment with Urban Expansion (도시 확장에 따른 온열환경의 변화)

  • Kim, Sang-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.95-101
    • /
    • 2007
  • The surface changes due to urban expansion and the increase of artificial heat releases have brought significant climate changes such as heat island phenomenon in urban area. Furthermore, these changes also have brought serious problems such as air temperature increase, wind changes, and air pollution in urban area. Comprehensive analytical technologies considering various effects are required to analyse complicated mechanism of climate changes, and review the efficient measures. In this research, the effect of the urban expansion in Tokyo and Bangkok area on urban environment will be discussed. By using CFD, urban development and the mechanism of global warming and wind change are studied in those two cities. As a result of numerical research, the surface changes of city could bring the environmental changes in urban area.

Evaluation of Thermal Environment of External Space following the Fence Demolition Campaign in Detached Housing Area (담장허물기로 인한 주택지 외부공간의 열환경 평가)

  • Ryu, Ji-Won;Jung, Eung-Ho;Shimizu, Aki;Oh, Sang-Hak;Hoyano, Akira
    • Journal of the Korean housing association
    • /
    • v.23 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • This study examines how fence demolition may change the thermal environments of external spaces of houses and suggests what factors need to be considered when a fence is demolished. The results of the research are summarized as follows. In terms of the surface temperature, there was no significant difference in all time plots after the removal of all materials. However, applying greening methods (changing the surface materials, planting trees, and building a green roof following fence demolition) could lower the surface temperatures, calling for proper plans for various greening methods. The MRT results indicates that walls block solar radiation and provide shade, reducing radiant heat from roads and surrounding structures during the daytime when solar radiation directly effects surface temperatures. Also, the application of greening methods such as planting vegetation and trees could have shading and evapotranspiration effects, leading to a lower temperature distribution. The HIP results were similar to the MRT results. They indicated that walls block solar radiation within the residential sections and provide shade, resulting in a lower temperature distribution during the daytime. However, areas where greening methods such as a green roof or tree planting were applied showed $1{\sim}2^{\circ}C$ difference in temperature distribution.