• Title/Summary/Keyword: Heat Interaction

Search Result 566, Processing Time 0.033 seconds

An Experimental Study on Effects of Cooling Airflow rate on the Automotive Cooling Performance (냉각공기량이 자동차 냉각성능에 미치는 영향에 관한 실험적 연구)

  • Kim, Jin-Hyun;Lee, Hae-Chul;Park, Jong-Nam;Cha, Kyung-Ok
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.950-954
    • /
    • 2001
  • Gasoline engine manufacturers are currently considering designs that will result in low combustion air temperature for improvement of fuel consumption and emission levels. There are a variety of cooling systems that can be used to accomplish this goal. Coolong is therefore normally achieved through a balance of ram and fan action. This paper studies the various systems and compare the cooling performance for several conditions, based on a automotive engine. An experimental analysis was developed to predict the interaction of the fan system and the heat exchangers of the engine cooling system. The local temperature induced by the fan on the cooling system is measured. These experimental result were accomplished using air flow management techniques.

  • PDF

Conjugate Analysis of Bubble Growth Involving Conduction in Solid (고체의 전도를 포함한 기포성장의 복합적 해석)

  • Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.265-273
    • /
    • 2003
  • Numerical analysis of bubble motion during nucleate boiling is performed by imposing a constant heat flux condition at the base of a heater which occurs in most of boiling experiments. The temporal and spatial variation of a solid surface temperature associated with the bubble growth and departure is investigated by solving a conjugate problem involving conduction in the solid. The vapor-liquid interface is tracked by a level set method which is modified to include the effects of phase change at the interface, contact angle at the wall and evaporative heat flux in a thin liquid micro-layer. Based on the numerical results, the bubble growth pattern and its interaction with the heating solid are discussed. Also, the effect of heating condition on the bubble growth under a micro-gravity condition is investigated.

Characteristics of thermoacoustic oscillation in ducted flame burner (관형 연소기의 열 음향학적 특성에 관한 실험적 연구)

  • 조상연;이수갑
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.985-991
    • /
    • 1997
  • Combustion instability is a common phenomenon in a ducted flame burner and is known as accompanying low frequency oscillation. This is due to the interaction between unsteady heat release rate and sound pressure field, that is, thermoacoustic feedback. In Rayleigh criterion, combustion instability is triggered when the heat addition is in phase with acoustic oscillation. A Rijke type burner with a pre-mixed flame is built for investigating the effect of Reynolds number and equivalence ratio on thermoacoustic oscillation. The results suggest that the frequency of max, oscillation is dependent on Reynolds number and equivalence ratio whereas its magnitude is not a strong function of these two parameters.

  • PDF

Bed Combustion in a Furnace Enclosure - a Model for the MSW Incinerator

  • Ryu, Chang-Kook;Shin, Dong-Hoon;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.58-64
    • /
    • 2002
  • The bed combustion in an incinerator interacts with the gas flow region through heat and mass transfer. Combined bed combustion and gas flow simulations are performed to investigate this coupled interaction for various operating conditions and furnace configurations. Radiation onto the bed from the furnace is interrelated with the combustion characteristics in the bed, and is also affected by the flow pattern in the gas flow region. Since the contribution of gaseous emission to the total radiation is significant, an adequate flow pattern in a well-designed furnace shape would lead to an increased heat influx on the bed, especially in the early stage of the waste combustion. Advancing the initiation point of the waste combustion can also reduce the size of the lower gas temperature region above the bed, which can be achieved by controlling operating conditions such as the waste feeding rate, the bed height and the primary air flow distribution.

  • PDF

Optimal control of resistance spot welding process (저항 점 용접공정의 최적제어)

  • 장희석;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.370-373
    • /
    • 1988
  • Althouah there have been many attempts to control weld quality in resistance spot welding processes, design method for an on-line feedback controller based upon process dynamics has not been suggested. This is due to the fact that the resistance spot welding is a highly complicated process, whice involves the interaction of electrical, thermal, mechanical and metallurgical phenomena. In this paper, an optimal control method based on FDM model with shunt effect is presented, which can regulate the nugget size, at the same time minimizing the control heat input. Optimal PI gain of the controller were determined by numerical optimization. Simulation results show that, as a result of the proposed optimal control, the weld nugget can be made to approach a desired nugget size with less control heat input than that required for the conventional spot welding process in the face of the shunt effect.

  • PDF

HYDROMAGNETIC FLOW IN A CAVITY WITH RADIATIVELY ACTIVE WALLS (복사벽면으로 구성된 캐비티 내 전자열유체 유동)

  • Han, Cho-Young;Chae, Jong-Won;Kim, Jung-Hoon;Jun, Hyoung-Yoll
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.87-94
    • /
    • 2010
  • Hydromagnetic flow in a cavity under a uniform magnetic field is studied numerically. The cavity is comprised of four radiatively active surfaces. Due to large temperature difference inside a cavity, the radiative interaction between walls is taken into account. The coupled momentum and energy equations are solved by SIMPLER algorithm while the radiant heat exchanges are obtained by the finite volume method for radiation. A Wide range of Grashof numbers is examined as a controlling parameter. Resultant flow and heat transfer characteristics are investigated as well.

An Experimental Study on the Effects of the Automotive Cooling Performance by Cooling Airflow rate (II) (냉각 공기량이 자동차 냉각성능에 미치는 영향에 관한 실험적 연구(II))

  • Kim, J.H.;Lee, H.C.;Lee, M.H.;Park, J.N.;Cha, K.O.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.940-945
    • /
    • 2001
  • Gasoline engine manufacturers are currently considering designs that will result in low combustion air temperature for improvement of fuel consumption and emission levels. There are a variety of cooling systems that can be used to accomplish this goal. Cooling is therefore normally achieved through a balance of ram and fan action. This paper studies the various systems and compare the cooling performance for several conditions, based on a automotive engine. An experimental analysis was developed to predict the interaction of the fan system and the heat exchangers of the engine cooling system. The local temperature induced by the fan on the cooling system is measured. These experimental result were accomplished using airflow management techniques.

  • PDF

Analysis for the Coolability of the Reactor Cavity in a Korean 1000 MWe PWR Using MELCOR 1.8.3 Computer Code

  • Lee, Byung-Chul;Kim, Ju-Yeul;Chung, Chang-Hyun;Park, Soo-Yong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.669-674
    • /
    • 1996
  • The analysis for the coolability of the reactor cavity in typical Korean 1000 MWe Nuclear Unit under severe accidents is performed using MELCOR 1.8.3 code. The key parameters molten core-concrete interaction(MCCI) such as melt temperature, concrete ablation history and gas generation are investigated. Total twenty cases are selected according to ejected debris fraction and coolant mass, The ablation rate of concrete decreases as mass of the melt decreases and coolant mass increases. Heat loss from molten pool to coolant is comparable to total decay heat, so concrete ablation is delayed until water is absent and crust begins to remove. Also, overpressurization due to non-condensible gases generated during corium and concrete interacts can cause to additional risk of containment failure. It is concluded that flooded reactor cavity condition is very important to minimize the cavity ablation and pressure load by non-condensible gases on containment.

  • PDF

Modeling of Pulsed Laser Heating of Tissue: Implications or Skin Resurfacing (Pulsed Laser를 이용한 생체조직 가열을 위한 모델링 : Skin Resurfacing을 위한 연관성)

  • Kwon, Y.H.;Rastegar, S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.375-379
    • /
    • 1997
  • Pulsed Er:YAG and $CO_2$ lasers induced temperature rise of tissue are studied using axisymmetric, two-dimensional, and transient Pennes' bio-heat equation or the implications of skin resurfacing. Model results indicate that Er:YAG laser induced temperature has much higher but more shallow distribution in tissue than that of the $CO_2$ laser because of its higher absorption coefficient. The increase of repetition rate does not affect the temperature rise too much because these laser modalities have much shorter heat diffusion time than the temporal length of each off-pulse. This model works as a tool to understand the photothermal effect in the laser-tissue interaction.

  • PDF

A PRELIMINARY STUDY OF PULSED LASER HEATING OF TISSUE FOR THE IMPLICATIONS OF SKIN RESURFACING

  • Kwon,Yong-Hoon;Kim, You-Young
    • Journal of Photoscience
    • /
    • v.5 no.1
    • /
    • pp.39-43
    • /
    • 1998
  • Pulsed Er: YAG and CO$_2$ lasers induced temperature rise of tissue is studied using axisymmetric, two-dimensional, and transient Pennes bio-heat equation for elucidating the implications of skin resurfacing. Modeling indicates that Er:YAG laser induced temperature has much higher but more shallow distribution in tissue than that of the CO$_2$ laser because of much higher absorption coefficient. The increase of repetition rate does not much affect on temperature rise because these laser modalities have much shorter heat diffusion time than the temporal length of each off-pulse. This model works as a tool to understand the photothermal effect in the laser-tissue interaction.

  • PDF