• 제목/요약/키워드: Heat Generation of Bearing

검색결과 71건 처리시간 0.021초

Thermal Model of High-Speed Spindle Units

  • Zver, Igor-Alexeevich;Eun, In-Ung;Chung, Won-Jee;Lee, Choon-Man
    • Journal of Mechanical Science and Technology
    • /
    • 제17권5호
    • /
    • pp.668-678
    • /
    • 2003
  • For the purpose to facilitate development of high-speed spindle units (SUs) running on rolling bearings, we have developed a beam element model, algorithms, and software for computer analysis of thermal characteristics of SUs. The thermal model incorporates a model of heat generation in rolling bearings, a model of heat transfer from bearings, and models for estimation of temperature and temperature deformations of SU elements. We have carried out experimental test and made quantitative evaluation of the effect of operation conditions on friction and thermal characteristics of the SUs of grinding and turning machines of typical structures. It is found out that the operation conditions make stronger effect on SU temperatures when rpm increases. A comparison between the results of analysis and experiment proves their good mutual correspondence and allows us to recommend application of the models and software developed for design and research of high-speed SUs running on rolling bearings.

고정밀 공작기계 주축계의 냉각특성에 관한 연구 (A Study on the Coling Charaacteristics of a High Precision Machine Tool spindle)

  • 김수태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 춘계학술대회 논문집
    • /
    • pp.12-17
    • /
    • 1997
  • Unsteady-state temperature distributions and thermal deformations of a high presision spindle are stueied in this paper. Thress dimensional model is built for analysis, and the amount of heat transfer coefficient are estimated. Temperature distributions and thermal deformations of a model are analyzed using the finite element method and the thermal boundary values. Numerical results are compared with the measured data. The results show that the thermal deformations and the temperature distributions of a high precision machine spindle can be reasonably estimated using the three dimensional model and the finite element method, and that the temperature rise by the heat generation of the bearing is effectively lowered by cooling of the shaft and the housing of a machine tool spindle.

  • PDF

페룰 가공용 초정밀 무심 연삭기의 열 특성 해석 (Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules)

  • 김석일;조재완
    • 한국정밀공학회지
    • /
    • 제23권1호
    • /
    • pp.193-200
    • /
    • 2006
  • To perform the finish grinding process of ferrules which are widely used as fiber optic connectors, a high-precision centerless grinding machine is necessary. The high-precision centerless grinding machine is consisted of the hydrostatic GW and RW spindle systems, hydrostatic RW feeding mechanism, RW swivel mechanism, on-machine GW and RW dressers, and concrete-filled steel bed. In this study, the thermal characteristics of the high-precision centerless grinding machine such as the temperature distribution, temperature rise and thermal deformation, are estimated based on the virtual prototype of the grinding machine and the heat generation rates of heat sources related to the machine operation conditions. The reliability of the predicted results is demonstrated by the temperature characteristics measured from the physical prototype. Especially, the predicted and measured results show the fact that the high-precision centerless grinding machine has very stable thermal characteristics.

Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules

  • Kim, Seok-Il;Cho, Jae-Wan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권1호
    • /
    • pp.32-37
    • /
    • 2007
  • The outer diameter finishing grinding process required for ferrules, which are widely used as fiber optic connectors, is carried out by high-precision centerless grinding machines. In this study, the thermal characteristics of such a machine, for example, the temperature distribution, temperature rise, and thermal deformation, were estimated based on a virtual prototype and the heat generation rates of heat sources related to normal operating conditions. The prototype consisted of a concrete-filled bed. hydrostatic grinding wheel (GW) and regulating wheel (RW) spindle systems, a hydrostatic RW feed mechanism, a RW swivel mechanism, and on-machine GW and RW dressers. The reliability of the predicted results was demonstrated using temperature characteristics measured from a physical prototype. The predicted and measured results indicated that this particular high-precision centerless grinding machine had very stable thermal characteristics.

모터내장형 주축의 온도분포해석에 관한 연구 (Temperature Distributions of High Precision Spindle with Built -in Motor)

  • 김용길;김수태;박천홍;김춘배
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.624-628
    • /
    • 1996
  • Unsteady-state temperature distributions in the high precision spindle system with built-in motor are studied. For the analysis, three dimensional model is built for the high precision spindle. The three dimensional model includes the estimation on the amount of heat generation of bearing and built-in motor and the thermal characteristic values such as heat transfer coefficient. Temperature distributions are computed using the finite element method. Analysis results are compared with the measured data. Analysis shows that temperature distributions of high precision spindle system can be estimated resonably using the three dimensional model through the finite element method.

  • PDF

공기동압베어링의 성능 해석 및 가공특성 평가 (Evaluation of Machining Characteristics and Performance Analysis of Air-Lubricated Dynamic Bearing)

  • 백승엽;김광래
    • 한국산학기술학회논문지
    • /
    • 제12권12호
    • /
    • pp.5412-5419
    • /
    • 2011
  • 산업의 발달에 따른 각종기기 장치들의 고속화, 소형화, 정밀화로 인해 고속 스핀들의 필요성은 점점 커지고 있다. 또한 공기동압베어링은 스테이지 모션에 대해서 무마찰 실현을 위해서 웨이퍼 생산용 광학 리소그래피 분야에도 적용된다. 공기동압베어링은 마찰에 의한 동력손실과 열 발생이 적어 고속회전에 유리하고 고정밀 회전이 가능하기 때문에 고속 고정밀 스핀들 시스템 및 하드 디스크 드라이브에 사용될 수 있다. 본 연구에서는 축 하중 지지를 위해 헤링본 홈 형상을 가지는 공기동압베어링의 성능에 대한 수치해석을 수행하였다. 또한 본 연구에서는 공기동압베어링을 제작하기 위해서 기존의 기계 가공방법과는 다른 비접촉식 초정밀 가공 방법인 마이크로 전기화학가공에 의한 방법으로 마이크로 그루브 가공을 수행하였고, 수치해석 프로그램을 이용하여 전극의 간극, 전해용액 농도, 가공시간 등 이론적인 수치를 시뮬레이션 하였다.

초소형 가스터빈엔진 열전달 현상의 수치적 및 실험적 연구 (Numerical and Experimental Analysis of Micro Gas Turbine Heat Transfer Effect)

  • 서준혁;권길성;최주찬;백제현
    • 대한기계학회논문집B
    • /
    • 제39권2호
    • /
    • pp.153-159
    • /
    • 2015
  • 본 연구에서는 MEMS기술을 적용한 2W급 초소형 가스터빈엔진의 개발과 실제 연소 환경에서의 발전 가능성을 해석적, 실험적으로 입증하였다. 초소형 가스터빈엔진은 터보차저, 연소기, 발전기로 이루어져 있다. 터보차저는 각각 직경 10mm와 9mm의 MEMS 공정 압축기와 터빈으로 구성되어 있으며 발전코일 또한 MEMS공정으로 설계되었다. 제작된 압축기와 터빈은 정밀 기계 가공된 축과 공기 베어링으로 지지되고 회전하며, 회전축 끝단에 영구자석을 설치하여 발전을 하게 된다. 공기 베어링과 압축기를 통한 냉각 효과를 해석하여 연소기에서 발생한 열을 충분히 차단할 수 있는 것으로 분석되었고, 이를 실험을 통해 검증하였다.

Surface Texturing한 평행 슬라이더 베어링의 열유체윤활 해석: 딤플 깊이의 영향 (Thermohydrodynamic Lubrication Analysis of Surface-Textured Parallel Slider Bearing: Effect of Dimple Depth)

  • 박태조;김민규
    • Tribology and Lubricants
    • /
    • 제33권6호
    • /
    • pp.288-295
    • /
    • 2017
  • In order to improve the efficiency and reliability of the machine, the friction should be minimized. The most widely used method to minimize friction is to maintain the fluid lubrication state. However, we can reduce friction only up to a certain limit because of viscosity. As a result of several recent studies, surface texturing has significantly reduced the friction in highly sliding machine elements, such as mechanical seals and thrust bearings. Thus far, theoretical studies have mainly focused on isothermal/iso-viscous conditions and have not taken into account the heat generation, caused by high viscous shear, and the temperature conditions on the bearing surface. In this study, we investigate the effect of dimple depth and film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of textured parallel slider bearings. We analyzed the continuity equation, the Navier-Stokes equation, the energy equation, and the temperature-viscosity and temperature-density relations using a computational fluid dynamics (CFD) code, FLUENT. We compare the temperature and pressure distributions at various dimple depths. The increase in oil temperature caused by viscous shear was higher in the dimple than in the bearing outlet because of the action of the strong vortex generated in the dimple. The lubrication characteristics significantly change with variations in the dimple depths and film-temperature boundary conditions. We can use the current results as basic data for optimum surface texturing; however, further studies are required for various temperature boundary conditions.

하이브리드 타입 초소형 가스터빈엔진 개발 및 초도 시운전 (Preliminary Study of Hybrid Micro Gas Turbine Engine)

  • 서준혁;최주찬;권길성;백제현
    • 한국유체기계학회 논문집
    • /
    • 제19권1호
    • /
    • pp.24-30
    • /
    • 2016
  • In this study, a 2W micro-gas turbine engine was designed using micro-electro-mechanical systems (MEMS) technology, and experimental investigations of its potential under actual combustion conditions were performed. A micro-gas turbine (MGT) contains a turbo-charger, combustor, and generator. Compressor and turbine blades, and generator coil were manufactured using MEMS technology. The shaft was supported by a precision computer numerical control (CNC) machined static air bearing, and a permanent magnet was attached to the end of the shaft for generation. A heat transfer analysis found that the cooling effect of the air bearing and compressor was sufficient to cover the combustor's high temperature, which was verified in an actual experiment. The generator performance test showed that it can generate 2W at design rotational speed. Prototype micro-gas turbine generated maximum 1 mW electric power and lasted up to 15 minutes.

수차용 봉수장치의 마찰.마모특성에 관한 실험적 연구 (Experimental Study on the Friction and Wear Characteristics of Contact Sealing Unit for a Water Turbine)

  • 김청균;신인철;임광현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.515-518
    • /
    • 2006
  • This paper presents the friction and wear characteristics of contact type sealing unit for a water turbine of a small hydro-power generation, which Is to stop a leakage of a circulating water from a outside of an impeller to an inside of a rolling bearing. The surface wear strongly affect to the seal life of a mechanical face seal. In this study, the hardness of a stainless steel in which is a heat-treated is 892.8 in Vickers hardness and the hardness of silicone carbide of SiC is 714.1 in Vickers hardness. The surface hardness of a heat-treated stainless steel is 25% high compared with that of a ceramic material of SiC. The contact modes of rubbing surfaces aye a dry friction a water film friction and a mixed friction that is contaminated by a dust, silt and moistures, etc. These two factors of a contact rubbing modes and a material property are very important parameters on the tribological performance such as a friction and wear between a seal ring and a seal seat. The experimental result shows that the surface hardness of a seal material is very important on the friction coefficient and a wear volume. Thus, the results recommend higher hardness of a seal material, which may reduce a friction loss and increase a wear life of primary seal components

  • PDF