• Title/Summary/Keyword: Heat Generation of Bearing

Search Result 71, Processing Time 0.027 seconds

고속 주축의 열변형이 소음특성에 미치는 영향

  • 이찬흥;김태형;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.307-311
    • /
    • 1997
  • This paper describes influence of thermal deformation on nosic characteristics in high speed spindle systems. Heat generation in front, rear spindle bearings and built in motor lead to diverse thermal deformation of headstock with time. This deformation changes assemble tolerance in bearing housing, especially to elliptic form. The elliptic assemble tolerance generate high nosie level with dominant amplitude in double rotational frequency.

Effects of Spindle Bearing's nonsymmetric heat Generation on Thermal Deformation of Headstock (주축베어링의 비대칭 발열이 열변형에 미치는 영향)

  • 이찬홍;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.215-219
    • /
    • 1995
  • 요사이 공작기계는 고생산성을 위해 고속절삭과 강력 절삭이 가능하도록 설계되고, 고성능의 Controller를 부착하여 이송과 공구착탈에 필요한 비절삭 시간을 급격히 단축시켜 나가고 있다. 본 연구에서는 공작기계 주축 베어링의 비대칭 벌열의 원인과 발열형태를 이론적으로 예측하고, 실험에 의해 비대칭 발열과 냉각특성 을 운전조건 별로 확인하였다. 또한 비대칭 발열이 주축대의 열변형에 어떤 영향을 미치는지 알기 위해 유 한요소법에 의해 열변위 특성을 분석하였다.

  • PDF

An analysis of the thermal behaviour on the spindle system for machine tools (공작기계용 주축계에 관한 열적거동 해석)

  • 고태조
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.90-97
    • /
    • 1996
  • The thermal deformation of a machine tool spindle influences the performance of the manufacturing systems for precision products. In this research, thermal analysis of a high speed machine tool spindle with the rolling bearing and the built-in motor is carried out by using Finite Difference Method. The thermal boundary conditions describing the heat generation in the bearing and built-in motor are considered in the simulation. And various convective boundary conditions are assumed with the empirical formula in the references. From the simulation results, the characteristics of each element affecting the dynamic thermal behaviour of the machine tool spindle system have been clarified. Therefore, this model can be well applied to the future development of the high speed spindle systems.

  • PDF

Characteristics for rotordynamics of laminated rotor supported by rolling bearings (구름베어링으로 지지된 적층로터의 로터다이나믹 특성)

  • Kim, Yeong-Chun;Park, Chul-Hyun;Park, Hei-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.822-825
    • /
    • 2002
  • A lot of rotating machinery are generally used in industrial field and the electrical machinery such as the motor and generator account for the most of the part. Generally motor and generator have electrical loss because of eddy current. So silicon steel sheets are used in order to reduce the electrical loss and furthermore laminated rotor is used for motor and generator to eliminate the electrical loss and heat generation. However, the more high speed, large scale and high precision of the system, the more important to estimate the critical speed. In this paper verifies the variation of the critical speeds in accordance with the variation of the pressing force of lamination plate for the rotor which is supported by ball bearing with the experimental data as well.

  • PDF

Thermal Characteristic Analysis of a High-Speed HMC with Linear Motor and Magnetic Bearing (리니어모터와 자기베어링을 채용한 초고속 HMC의 열특성 해석)

  • Kim, S. I.;Lee, W. J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.11-15
    • /
    • 2002
  • This paper presents the thermal characteristic analysis of a high-speed HMC with spindle speed of 50,000rpm. The spindle is supported by two radial and axial magnetic bearings. and the built-in motor is located between the axial and rear radial magnetic bearings. The X-axis and Y-axis feeding systems are composed of linear motor and linear motion guides, and the Z-axis feeding system is composed of servo-motor, ballscrew and linear motion guide. The thermal analysis model of high-speed HMC is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on the temperature distribution and thermal deformation under the conditions related to the heat generation of built-in motor, magnetic bearings, linear motors, servo-motor, ballscrew, and so on.

  • PDF

Thermohydrodynamic Analysis Considering Flow Field Patterns Between Roughness Surfaces (미세 표면 거칠기에 지배되는 박막 유동장 형태를 고려한 윤활거동)

  • 김준현;김주현
    • Tribology and Lubricants
    • /
    • v.19 no.3
    • /
    • pp.167-177
    • /
    • 2003
  • The study deals with the development of a thermohydrodynamic (THD) computational procedure for evaluating the pressure, temperature and velocity distributions in fluid films with very rough geometry. A parametric investigation is performed to predict the bearing behaviors in the lubricating film having the absorbed layers and their interfaces determined by the rough surfaces with Gaussian distribution. The layers are expressed as functions of the standard deviations of each surface to characterize flow patterns between both the rough sur-faces. The velocity variations and the heat generation are assumed to occur in the central (shear) zone with the same bearing length and width. The coupled effect of surface roughness and shear zone dependency on hydrodynamic pressure and temperature has been found in non-contact mode. The procedure confirms the numerically determined relationship between the pressure and film gap on condition that its roughness magnitude is smaller than the fluid film thickness.

Thermal Characteristics Analysis of 30,000rpm High Speed Spindle (30,000rpm 고속 주축의 열특성 분석)

  • Lim, Jeong-Suk;Yu, Ki-Han;Chung, Won-Jee;Kim, Soo-Tae;Lee, Jung-Hwan;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.120-126
    • /
    • 2009
  • Thermal displacement of high speed spindle is very important problem to be solved. To solve heat generation and thermal displacement problems that influence on the product accuracy, it is very important to predict thermal characteristics of the spindle and it is positively necessary to select the conditions of cooling, flow rate and preload of bearings. In this paper, 30,000rpm($1.455{\times}10^6DmN$) spindle was designed and produced. The analysis of thermal deformation for heat generation of inner spindle was carried out using commercial program $ANSYS^{(R)}$ and the result was compared with measured data using $LabVIEW^{(R)}$ and SGXI-1600, 1125 and 1126 module. Temperature distribution and thermal displacement according to spindle speed are measured. Using this method, it is possible to predict and to improve thermal characteristic of high speed spindle by control spindle speed, bearing preload and cooling rate.

Stiffness effect of the lamination pressing force for laminated rotor (적층된 로터에서 적층판 압착력의 강성 효과)

  • 김영춘;박철현;박희주;문태선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.565-568
    • /
    • 2002
  • A lot of rotating machines are being used in the industrial world and electric motor and generator take the most part of it. When it comes to the electric motor and generator, we can not help thinking about the eddy current because it brings a loss of electric and can be a important reason of the heat generation. To attenuate eddy current. laminated silicon steel sheets are being used in general. Especially, laminated rotor is being used for rotating part of the electric motor and generator and it decreases electrical loss and heat generation but we can be faced with another problem. In general, most of the motor and generator can be normally operated under 3600rpm because they are designed to have the first critical speed more than that speed. But nowadays, they should be operated more than the first critical speed as usual with the trend of high speed. large scale and high precision in industrial world. The critical speed can be determined from the inertia and stiffness for the rotor and bearing of rotating systems. The laminated rotor stiffness can be hardly determined because it can be derived a lot factors for instance rotor material and shape. lamination material and shape. insulation material. lamination force and so on. In this paper, the change of the natural frequency of the motor was examined with the change of the lamination force as an experimental method.

  • PDF

A Study on the Thermal Characteristics of Spindle for the Spinning Machine (스피닝 머신용 대형주축의 열특성에 관한 연구)

  • Jeong D.S.;Kim S.T.;Choi D.B.;Ye S.B.;Seol S.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.555-559
    • /
    • 2005
  • Spinning process is a chipless metal forming method for axis-symmetric parts, which is more economical, efficient and versatile method for producing parts than other sheet metal forming process such as stamping or deep drawing. The large-sized spindle for spinning machine is the equipment to ferm a high-pressure vessel into the demanded shape. The important problem in the spindle system fur spinning machines is to reduce and minimize the thermal effect by motor and bearings. In this study, the effect of heat generation of bearings for the large-sized spindle is considered. Temperature distribution and thermal displacement of the spindle system for spinning machine can be analyzed by using the finite element method. The numerical results are compared with the measured data. The results show that temperature distribution and thermal displacement can be reasonably estimated by using the finite element method and the three dimensional model.

  • PDF

A Novel High Precision Electromagnetic Suspension for Long-Stroke Movement and Its Performance Evaluation

  • Lee, Ki-Chang;Moon, Seokhwan;Ha, Hyunuk;Park, Byoung-Gun;Kim, Ji-Won;Baek, Jun-Young;Lee, Min-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.514-522
    • /
    • 2014
  • A new type of high precision electromagnetic suspension (EMS) which can support heavy tray along long stroke rail is proposed in this paper. Compared with the conventional EMS, the suggested moving-core typed EMS has the levitation electromagnets (EMs) on the fixed rail. This scheme has high load capability caused by iron-core and enables simple tray structure. Also it does not have precision degradation caused by heat generation from EMs, which is a drawback of conventional EMS. With these merits, the proposed EMS can be an optimal contactless linear bearing in next generation flat panel display (FPD) manufacturing process if the ability of long stroke movement is proved. So a special Section Switching Algorithm (SSA) is derived from the resultant force and moment equations of the levitated tray which enables long stroke movement of the tray. In order to verify the feasibility of the suggested SSA, a simple test-setup of the EMS with 2 Section-changes is made up and servo-controlled in the simulation and experiment. The simulation shows the perfect changeover the EMs, and the experiment shows overall control performance of under ${\pm}40{\mu}m$ gap deviations. These results reveal that the newly suggested contactless linear bearing can simultaneously achieve high load capability and precision gap control as well as long stroke.