• Title/Summary/Keyword: Heat Generation

Search Result 1,811, Processing Time 0.038 seconds

Heating Characteristics of Planar Heater Fabricated with Different Mixing Ratios of MXene-CNT-WPU Composites (MXene-CNT-WPU 복합소재 기반 면상발열체의 배합 비율에 따른 발열 특성)

  • Hyo-Jun, Oh;Quy-Dat, Nguyen;Yoonsik, Yi;Choon-Gi, Choi
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.278-284
    • /
    • 2022
  • This study presents an excellent planar heater based on low-dimensional composites. By optimizing the ratio of 1D carbon nanotubes (CNT) and 2D MXene (Ti3C2TX), it is possible to create a planar heater that has superior electrical conductivity and high heat generation characteristics. Low-dimensional composites were prepared by mixing CNT paste and MXene solution with eco-friendly waterborne polyurethane (WPU). In order to find the optimal mixing ratio for the MXene-CNT-WPU composites, samples with MXene to CNT weight ratios of 3:1, 1:1, 1:3, 1:7, and 1:14 were investigated. In addition to these different weight ratios, 5 wt% WPU was equally applied to each sample. It was confirmed that the higher the weight ratio of CNT, the lower the sheet resistance and the higher the heating temperature. In particular, when the MXene-CNT-WPU planar heater was fabricated by mixing MXene and CNT at a weight ratio of 1:7 and 1:14, the heating temperature was higher than the heating temperature of a CNT-WPU planar heater. These characteristics are due to the optimized mixture of the 1D materials (CNT) and the 2D materials (MXene) causing the formation of a flat surface and a dense network structure. The low-dimensional composites manufactured with the optimized mixing ratios found in this study are expected to be applied in flexible electronic devices.

Evaluation of Intestinal Immunity Activity by Steam-Heat Treatment and Fermentation of Lactic Acid Bacteria of Fruit and Vegetable Complex Extracts containing Red Ginseng (홍삼함유 과채류 복합 추출물의 증숙열처리 및 유산균 발효에 의한 장관면역 활성)

  • Kim, Hyun Kyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.935-941
    • /
    • 2022
  • The purpose of this study was to investigate whether the activity of ginsenoside metabolites and the intestinal immunity antioxidant activity were remarkably improved by lactic acid bacteria fermentation by adding a small amount of ginsenoside to the complex extracts of fruits and vegetables. It was confirmed that the increase in intestinal immunity antioxidant activity due to synergistic effect was observed in the fruit-vegetable extract containing ginsenoside compared to the ginsenoside-only extract or the fruit-vegetable extract. Then, by adding ginsenosides by content, the concentration of ginsenosides that can obtain a synergistic effect according to the fermentation of lactic acid bacteria was determined. As a result, it was confirmed that a synergistic effect was exhibited when lactic acid bacteria were fermented and extracted by mixing ginsenosides in a mass ratio of 3 to 10% with respect to the mass of the fruit-vegetable mixture. As a result, when treated at a concentration of 200 ㎍/ml, the fruit-vegetable complex extract containing ginsenoside metabolites inhibited the generation of NO by about 60% compared to the complex extract containing no ginsenoside, The expression of IL-1β was suppressed by 63%, the expression of IL-6 by 69%, and the expression of TNF-α by 76%, confirming that the intestinal immune antioxidant properties were significantly improved.

Electrochemical Ion Separation Technology for Carbon Neutrality (탄소중립을 지향하는 전기화학적 이온 분리(EIONS) 기술)

  • Hwajoo Joo;Jaewuk Ahn;Sung-il Jeon;Jeyong Yoon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.331-346
    • /
    • 2023
  • Recently, green processes that can be directly used in an energy-efficient and electrified society to achieve carbon neutrality are attracting attention. Existing heat and pressure-based desalination technologies that consume tremendous amounts of energy are no exception, and the growth of next-generation electrochemical-based desalination technologies is remarkable. One of the most representative electrochemical desalination technologies is electrochemical ion separation (EIONS) technology, which includes capacitive desalination (CDI) and battery desalination (BD) technology. In the research field of EIONS, various system applications have been developed to improve system performance, such as capacity and cyclability. However, it is very difficult to understand the meaning and novelty of these applications immediately because there are only a few papers that summarize the research background for domestic readers. Therefore, in this review paper, we aim to describe the technological advances and individual characteristics of each system in clear and specific detail about the latest EIONS research. The driving principle, research background, and strengths and weaknesses of each EIONS system are explained in order. In addition, this paper concluded by suggesting the future development and research direction of EIONS. Researchers who are just beginning out in EIONS research can also benefit from this study because it will help them understand the research trend.

Numerical Modeling of Thermoshearing in Critically Stressed Rough Rock Fracture: DECOVALEX-2023 Task G (임계응력 하 거친 암석 균열의 Thermoshearing 수치모델링: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook Park;Chan-Hee Park;Li Zhuang;Jeoung Seok Yoon;Changlun Sun;Changsoo Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.189-207
    • /
    • 2023
  • In the present study, the thermoshearing experiment on a rough rock fracture were modeled using a three-dimensional grain-based distinct element model (GBDEM). The experiment was conducted by the Korea Institute of Construction Technology to investigate the progressive shear failure of fracture under the influence of thermal stress in a critical stress state. The numerical model employs an assembly of multiple polyhedral grains and their interfaces to represent the rock sample, and calculates the coupled thermo-mechanical behavior of the grains (blocks) and the interfaces (contacts) using 3DEC, a DEM code. The primary focus was on simulating the temperature evolution, generation of thermal stress, and shear and normal displacements of the fracture. Two fracture models, namely the mated fracture model and the unmated fracture model, were constructed based on the degree of surface matedness, and their respective behaviors were compared and analyzed. By leveraging the advantage of the DEM, the contact area between the fracture surfaces was continuously monitored during the simulation, enabling an examination of its influence on shear behavior. The numerical results demonstrated distinct differences depending on the degree of the surface matedness at the initial stage. In the mated fracture model, where the surfaces were in almost full contact, the characteristic stages of peak stress and residual stress commonly observed in shear behavior of natural rock joints were reasonably replicated, despite exhibiting discrepancies with the experimental results. The analysis of contact area variation over time confirmed that our numerical model effectively simulated the abrupt normal dilation and shear slip, stress softening phenomenon, and transition to the residual state that occur during the peak stress stage. The unmated fracture model, which closely resembled the experimental specimen, showed qualitative agreement with the experimental observations, including heat transfer characteristics, the progressive shear failure process induced by heating, and the increase in thermal stress. However, there were some mismatches between the numerical and experimental results regarding the onset of fracture slip and the magnitudes of fracture stress and displacement. This research was conducted as part of DECOVALEX-2023 Task G, and we expect the numerical model to be enhanced through continued collaboration with other research teams and validated in further studies.

COATED PARTICLE FUEL FOR HIGH TEMPERATURE GAS COOLED REACTORS

  • Verfondern, Karl;Nabielek, Heinz;Kendall, James M.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.603-616
    • /
    • 2007
  • Roy Huddle, having invented the coated particle in Harwell 1957, stated in the early 1970s that we know now everything about particles and coatings and should be going over to deal with other problems. This was on the occasion of the Dragon fuel performance information meeting London 1973: How wrong a genius be! It took until 1978 that really good particles were made in Germany, then during the Japanese HTTR production in the 1990s and finally the Chinese 2000-2001 campaign for HTR-10. Here, we present a review of history and present status. Today, good fuel is measured by different standards from the seventies: where $9*10^{-4}$ initial free heavy metal fraction was typical for early AVR carbide fuel and $3*10^{-4}$ initial free heavy metal fraction was acceptable for oxide fuel in THTR, we insist on values more than an order of magnitude below this value today. Half a percent of particle failure at the end-of-irradiation, another ancient standard, is not even acceptable today, even for the most severe accidents. While legislation and licensing has not changed, one of the reasons we insist on these improvements is the preference for passive systems rather than active controls of earlier times. After renewed HTGR interest, we are reporting about the start of new or reactivated coated particle work in several parts of the world, considering the aspects of designs/ traditional and new materials, manufacturing technologies/ quality control quality assurance, irradiation and accident performance, modeling and performance predictions, and fuel cycle aspects and spent fuel treatment. In very general terms, the coated particle should be strong, reliable, retentive, and affordable. These properties have to be quantified and will be eventually optimized for a specific application system. Results obtained so far indicate that the same particle can be used for steam cycle applications with $700-750^{\circ}C$ helium coolant gas exit, for gas turbine applications at $850-900^{\circ}C$ and for process heat/hydrogen generation applications with $950^{\circ}C$ outlet temperatures. There is a clear set of standards for modem high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a $500{\mu}m$ diameter $UO_2$ kernel of 10% enrichment is surrounded by a $100{\mu}m$ thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of $35{\mu}m$ thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum $1600^{\circ}C$ afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modem coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond $1600^{\circ}C$ for a short period of time. This work should proceed at both national and international level.

Neutrophil Chemotactic Activity in Bronchoalveolar Lavage Fluid of the Rats Exposed to Hyperoxia (고농도의 산소에 노출시킨 쥐의 기관지폐포세척액내 호중구 화학주성활성화도)

  • Song, Jeong Sup;Lee, Sook Young;Moon, Wha Sik;Park, Sung Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.4
    • /
    • pp.547-557
    • /
    • 1996
  • Background : An excessive accumulation of neutrophils in lung tissue has been known to play an important role in mediating the tissue injury among the adult respiratory distress syndrome, idiopathic pulmonary fibrosis and cystic fibrosis by releasing toxic oxygen radicals and proteolytic enzymes. Therefore, it is important to understand a possible mechanism of neutrophil accumulation in lung tissue. In many species, exposure to hyperoxic stimuli can cause changes of lung tissues very similar to human adult respiratory distress syndrome and neutrophils are also functioning as the main effector cells in hyperoxic lung injury. The purpose of the present study was to examine whether neutrophils function as a key effector cell and to study the nature of possible neutrophil chemotactic factors found in bronchoalveolar lavage fluid from the hyperoxia exposed rats. Methods : We exposed the rats to the more than 95% oxygen for 24, 48, 60 arid 72 hours and bronchoalveolar lavage(BAL) was performed. Neutrophil chemotactic activity was measured from the BAT- fluid of each experimental groups. We also evaluated the molecular weight of neutrophil chemotactic tractors using fast performance liquid chromatography and characterized the substances by dialyzer membrane and heat treatment. Results : 1) The neutrophil proportions in bronchoalveolar lavage fluid began to rise from 48 hours after oxygen exposure, and continued to be significantly increased with exposure times. 2) chemotactic index for neutrophils in lung lavages from rats exposed to hyperoxia was significantly higher in 48 hours group than in control group, and was significantly increased with exposure time. 3) No deaths occured until after 48 hours of exposure. However, mortality rates were increased to 33.3 % in 60 hours group and 81.3 % in 72 fours group. 4) Gel filtration using fast performance liquid chromatography disclosed two peaks of neutrophil chemotactic activity in molecular weight of 104,000 and 12,000 daltons. 5) Chemotactic indices of bronchoalveolar lavage fluid were significantly deceased when bronchoalveolar lavage fluid was treated with heat ($56^{\circ}C$ for 30 min or $100^{\circ}C$ for 10 min) or dialyzed (dialyzer membrane molecular weight cut off : 12,000 daltons). Conclusion : These results suggested that the generation of neutrophil chemotactic factor and subsequent neutrophil influx into the lungs are playing an important roles in hyperoxia-induced acute lung injury. Neutrophil chemotactic factor in the lung lavage fluids consisted of several distinct components having different molecular weight and different physical characteristics.

  • PDF

DISTRIBUTION AND PHYSIOLOGICAL CHARACTERISTICS OF BACILLUS CEREUS IN RICE AND RICE PRODUCTS (미반류에 있어서 Bacillus cereus균의 분포와 생리적특성에 관한 연구)

  • LEE Myeong-Sook;CHANG Dong-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.163-171
    • /
    • 1980
  • Recently, Bacillus has been identified as one of food poisoning bacteria especially in products of cereal foods in foreign countries. Therefore, the quantitative distribution of Bacillus cereus in market foods, its physiological characteristics, growth rate by temperature and heat resistance of its spore were examined. Thirty two samples of cooked rice, 20 samples of kimbab(cooked rice rolled with laver), 23 samples of rice cake, 13 samples of rice ana 13 samples of barley were collected from restaurents and food stores in Busan, Korea during the period from May to November in 1980. Forty samples of 101 samples submitted to the test appeared positive for Bacillus cereus showing abut $40\%$ in detection ratio. Detection ratio of Bacillus cereus was higher than $50\%$ in barley and rice, and about $30\%$ in rice products. Average Bacillus cereus content of in the samples was $2.6\times10^6/g$ in cooked rice, $2.3\times10^6/g$in kimbab, $4.9\times10^4/g$ in rice cake while that in rice and barley was about $10^3/g$. The result of biochemical tests of the bacterium was $100\%$ positive in catalase, egg yolk reaction, gelatin hydrolysis and glucose fermentation, $100\%$ negative in xylose, arabinose and mannitol oxidation, about $90\%$ positive in acetoin production, $80.0\%$ positive in nitrate reduction and citrate utilization and $55.0\%$ positive in starch hydrolysis test. Isolation ratio of Bacillus ceresus which showed haemolysis positive and starch hydrolysis negative results, was about $38\%$ in 40 strains examined. It is known that those strains has a close relation to food poisoning accident. Growth rate and generation time of Bacillus cereus isolated from the cooked rice were $0.34hr^{-1},\;2.02hr\;at\;20^{\circ}C,\;0.73hr^{-1},\;0.95hr\;at\;30^{\circ}C\;and\;0.49hr^{-1},\;1.44\;hr\;at\;40^{\circ}C$ respectively. Heat resistance value of Bacillus cereus spores suspended in phosphate buffer solution was $D_{90}=29.0min,\;D_{95}=8.7min,\;D_{98}=3.7\;min\;and\;D_{101}=2.3\;min(z=10.5)$.

  • PDF

Bacterial Quality of Fish Meat Paste Products and Isolation of Thermoduric Bacteria (어육연제품의 세균학적 품질 및 내열성세균의 특성에 관한 연구)

  • 김동판;장동석;김성준
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.4
    • /
    • pp.409-415
    • /
    • 1985
  • This study has been carried out in order to investigate the bacterial quality of fish meat paste products and the characteristics of isolated thermodurics from the products. Twenty samples of crab-flavored fish stick (Kematsal), 23 samples of plate fish meat paste (Panomuk, Kamaboko), 5 samples of fried fish meat paste (Tigimomuk), 2 samples of roasted fish meat paste (Puduromuk, Chikuwa), 20 samples of fish sausage were collected from processing plants and supermarkets in Pusan, Korea during the period from May to October in 1984. The results obtained are as follows. Amont the samples collected from supermarkets, roasted fish meat paste and fried fish meat paste marked hish counts in coliforms and fungi while very low in the samples of crab-flavored fish stick and plate fish meat paste. Salmonella was not detected in all the samples examined and Staphylococcus aureus was detected only in fried fish meat paste, Thermoduric bacteria were detected less than 10$^2$/g in the samples of crab-flavored fish stick and plate fish meat paste, which might come from subsidiary materials such as starch and seasonings. Among the isolated bacteria, distribution of the proteolytics were more than 87% and the lipolytics were less than 20%. Gram positive bacteria was more than 70% in crab-flavored fish stick and plate fish meat paste, 47.3% in fried fish meat paste. And rod in shape was almost more than 90% in all the samples. The most heat resistant bacterium isolated from the samples was identified as a Bacillus licheniformis(named B. licheniformis CR-11). The strain showed strong proteolytic activity and also grew well at above 2$0^{\circ}C$. The growth rate and generation time of CR-11 strain were 0.31 hr$^{-1}$ , 2.24 hr at 2$0^{\circ}C$, 0.64 hr$^{-1}$ , 1.09 hr at 3$0^{\circ}C$ and 0.78 hr$^{-1}$ , 0.89 hr at 35$^{\circ}C$. Heat resistance value of the spores of CR-11 strain suspended in phosphate buffer solution was D$_{85}$ $^{\circ}C$=41.9 min, D$_{90}$ $^{\circ}C$=27.9 min, D$_{95}$ $^{\circ}C$=10.2 min, D$_{100}$ $^{\circ}C$=4.3 min (Z=13.8$^{\circ}C$)

  • PDF

A Study on the Effect of Applying Water Seepage Lowering Method Using Swelling Waterstop for Expansion Joint in the Concrete Dam (콘크리트 댐에서 수축이음부의 수팽창성 차수재를 이용한 침투저감 공법 적용효과 연구)

  • Han, Kiseung;Lee, Seungho;Kim, Sanghoon;Kim, Sejin;Pai, Sungjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.10
    • /
    • pp.21-29
    • /
    • 2021
  • Most concrete gravity-type dams in and out of the country were constructed by column method to control cracks caused by concrete hydration heat generated during construction, resulting in a certain level of leakage after impoundment through various causes, such as contraction joints and construction joints. However, due to the characteristics of concrete structures that shrink and expand according to temperature, concrete dams have vertical joints and drains to allow penetration. PVC waterproof shows excellent effects in completion of the dam, which however increases the possibility of interfacial failure due to different thermal expansion. Other causes of penetration may include problems with quality control during installation, generation of cracks due to heat of hydration of concrete, waterproofing methods, etc. In the case of Bohyunsan Dam in Yeongcheon, North Gyeongsang Province, the amount of drainage in the gallery was checked and underwater, and it was confirmed that there are many penetrations from drainage holes connected to vertical joints, and that some of the PVC waterproofs are not fully operated. As a new method to prevent penetration through vertical joints, D.S.I.M. (Dam Sealing Innovation Method) developed by World E&C was applied to Bohyunsan Dam and checked the amount of drainage in the gallery. As a result of first testing three most leaking vertical joints, the drain in the gallery was reduced by 87% on the average and then applied to the remaining 13 locations, which showed a 83% reduction effect based on the total drain in the gallery. Summing up these results, it was found that D.S.I.M. preventing water leakage from the upstream face is a valid construction method to reduce the water see-through and penetration quantity seen in downstream faces of concrete dams. If D.S.I.M. is applied to other concrete dams at domestic and abroad, it is expected that it will be very effective to prevent water leakage through vertical joints that are visible from downstream faces.

The Effect of Heating Rate by Ohmic Heating on Rheological Property of Corn Starch Suspension (Ohmic Heating에 의한 가열속도 변화가 옥수수전분의 물성특성에 미치는 영향)

  • Lee, Seok-Hun;Jang, Jae-Kweon;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.438-442
    • /
    • 2005
  • Granule swelling is essential phenomenon of starch gelatinization in excess water, and characteristic of heated starch dispersion depends largely on size and distribution of swelled starch granule. Although swelling characteristic of starch granules depends on type of starch, heating rate, and moisture content, influence of heating rate on swelling phenomenon of starch granule has not been fully discussed, because constant heating rate of starch dispersion cannot be obtained by conventional heating method. Ohmic heating, electric-resistant heat generation method, applies alternative current to food materials, through which heating rate can be easily controlled precisely and conveniently at wide range of constant heating rates. Starch dispersion heated at low heating rates below $7.5^{\circ}C/min$ showed Newtonian fluid behavior, whereas showed pseudoplastic behavior at heating rates above $16.4^{\circ}C/min$. Apparent viscosity of starch dispersion increased linearly with increasing heating rate, and yield stress was dramatically increased at heating rates above $16.4^{\circ}C/min$. Average diameter of corn starch granules during ohmic heating was dramatically increased from $30.97\;to\;37.88\;{\mu}m$ by increasing heating rate from $0.6\;to\;16.4^{\circ}C/min$ (raw corn starch: $13.7\;{\mu}m$). Hardness of starch gel prepared with 15% corn starch dispersion after heating to $90^{\circ}C$ at different heating rates decreased gradually with increasing heating rate, then showed nearly constant value from $9.4\;to\;23.2^{\circ}C/min$. Hardness increased with increase of heating rate higher than $23.2^{\circ}C/min$.