• Title/Summary/Keyword: Heat Generation

Search Result 1,811, Processing Time 0.029 seconds

Studies on the Chemical Resistance of Phytopathogenic Bacteria II. Selective Effect of Chemical Resistance on the Rice Bacterial Leaf Blight Pathogen, Xanthomonas oryzae (Uyeda et Ishiyama) Dowson, to Agrepto (식물병원성 세균의 약제저항성에 관한 연구 II. 벼흰빛잎마름병균의 Agrepto에 대한 저항성의 선발효과)

  • Cho W. C.;Shim J. W.
    • Korean journal of applied entomology
    • /
    • v.16 no.4 s.33
    • /
    • pp.229-234
    • /
    • 1977
  • The experiments were carried out to investigate the selection effects on the drug resistance to Agrepto in Xanthomonas oryzae, the causal bacteria of rice bacterial leaf blight. The results obtained were as follows. 1, The Agrepto was stable at the heat treatment of $105^{\circ}C$ for 20 minutes, when the drug was added in the media. 2. The local isolates of the bacteria, 75-6 and 75-9, showed the different resistante reaction, when they were selected by the Agrepto contained media which concentrations of 10r9/m1 and 100ug/ml. 3. The individuals shelving high degree of resistance, which can grow on the media contained 10,000ug/m1 of Agrepto, could selected by the concentrations as low as 10ug/ml and 100ug/m1, in one generation. 4. The highly resistant isolates which selected by 3-stepwise selections such as 100ug/ml, 3,000ug/ml and 10,000/ml plots, showed nearly normal growth at the media contained 100ug/ml of Agrepto 5. When the isolate 75-9 was selected at the 100ug/m1 of concentration, showed various degrees of resistance, indicating that the isolate may be composed of resistance groups that lower than 500ug/ml, between 500-1,000ug/ml and 1,000-3,000ug/ml, to the Agrept.

  • PDF

Experimental Study on the Fire Behavior in Double Deck Tunnel (복층터널내 화재특성에 대한 실험적 연구)

  • Park, Jin-Ouk;Yoo, Yong-Ho;Kim, Hwi-Seung;Park, Byoung-Jik
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.75-80
    • /
    • 2016
  • In the wake of expanding and overpopulating urban areas, traffic congestion has been worsening increasingly, causing huge economic losses. In a bid to effectively use the space of metropolitan areas, the construction and operation of a double deck tunnel has been on the rise. On the other hand, a lower height of a double deck tunnel is expected to generate more smoke and soot in a fire than other usual tunnels. Therefore, it is undesirable to apply the standard for fire intensity or smoke generation, which were designed for existing road tunnels. A part of an effort to propose a design fire curve that is useful for double deck tunnel, is intended to obtain and analyze the fire characteristics in a double deck tunnel through a real scale fire test. The test was conducted according to the fire scenario with one passenger car and two passenger cars; the monitored fire intensity was a maximum of 2.4 MW and 3.5 MW, respectively.

Characteristics of SiO2/Si Quantum Dots Super Lattice Structure Prepared by Magnetron Co-Sputtering Method (마그네트론 코스퍼터링법으로 형성한 SiO2/Si 양자점 초격자 구조의 특성)

  • Park, Young-Bin;Kim, Shin-Ho;Ha, Rin;Lee, Hyun-Ju;Lee, Jung-Chul;Bae, Jong-Seong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.586-591
    • /
    • 2010
  • Solar cells have been more intensely studied as part of the effort to find alternatives to fossil fuels as power sources. The progression of the first two generations of solar cells has seen a sacrifice of higher efficiency for more economic use of materials. The use of a single junction makes both these types of cells lose power in two major ways: by the non-absorption of incident light of energy below the band gap; and by the dissipation by heat loss of light energy in excess of the band gap. Therefore, multi junction solar cells have been proposed as a solution to this problem. However, the $1^{st}$ and $2^{nd}$ generation solar cells have efficiency limits because a photon makes just one electron-hole pair. Fabrication of all-silicon tandem cells using an Si quantum dot superlattice structure (QD SLS) is one possible suggestion. In this study, an $SiO_x$ matrix system was investigated and analyzed for potential use as an all-silicon multi-junction solar cell. Si quantum dots with a super lattice structure (Si QD SLS) were prepared by alternating deposition of Si rich oxide (SRO; $SiO_x$ (x = 0.8, 1.12)) and $SiO_2$ layers using RF magnetron co-sputtering and subsequent annealing at temperatures between 800 and $1,100^{\circ}C$ under nitrogen ambient. Annealing temperatures and times affected the formation of Si QDs in the SRO film. Fourier transform infrared spectroscopy (FTIR) spectra and x-ray photoelectron spectroscopy (XPS) revealed that nanocrystalline Si QDs started to precipitate after annealing at $1,100^{\circ}C$ for one hour. Transmission electron microscopy (TEM) images clearly showed SRO/$SiO_2$ SLS and Si QDs formation in each 4, 6, and 8 nm SRO layer after annealing at $1,100^{\circ}C$ for two hours. The systematic investigation of precipitation behavior of Si QDs in $SiO_2$ matrices is presented.

Use of By-product Hydrated Lime as Alkali Activator of Blast Furnace Slag Blended Cement (고로수쇄(高爐水碎)슬래그 혼합(混合)시멘트의 알칼리 자극제(刺戟劑)로 부산소석회(副産消石灰)의 활용(活用))

  • Cho, Jin-Sang;Yu, Young-Hwan;Choi, Moon-Kwan;Cho, Kye-Hong;Kim, Hwan;Yeon, Kyu-Seok
    • Resources Recycling
    • /
    • v.19 no.3
    • /
    • pp.33-44
    • /
    • 2010
  • In this study, the possibility of utilizing carbide lime waste, obtained from the generation of acetylene process, as a alkali activator of blast furnace slag cement was investigated. The physical and chemical analysis of the carbide lime waste was studied and three types lime waste in order to investigate behaviour as alkali activator were used. Lime wastes were added 0, 10, 20 and 30 wt.% in blast furnace slag and blast furnace slag containing lime waste were added 0, 10, 30 and 50 wt.% in OPC. As a result of analysis of hydration properties, in the case of calcium hydroxide rehydrated after heat treatment at $800^{\circ}C$, it was higher hydration rate than other specimens. For the results of compressive strength test, when lime waste passed 325 mesh sieve and rehydrated calcium hydroxide were used, it was higher compressive strength than OPC from hydration 7days. At OPC50 wt.%-BFS45 wt.%-AA5 wt.% system using lime waste of 325 mesh under, the highest compressive strength appeared.

A Study on Electrolysis of Heavy Water and Interaction of Hydrogen with Lattice Defects in Palladium Electrodes (팔라디움전극에서 중수소의 전기분해와 수소와 격자결함의 반응에 관한 연구)

  • Ko, Won-Il;Yoon, Young-Ku;Park, Yong-Ki
    • Nuclear Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.141-153
    • /
    • 1992
  • Excess tritium analysis was peformed to verify whether or not cold fusion occurs during electrolysis of heavy water in the current density range of 83~600 mA/$\textrm{cm}^2$ for a period of 24 ~ 48 hours with use of palladium electrodes of seven different processing treatments and geometries. The extent of recombination of D$_2$ and $O_2$gases in the electrolytic cell was measured for the calculation of accurate enthaplpy values. The behavior and interaction of hydrogen atoms with defects in Pd electrodes were examined using the Sieverts gas charging and the positron annihilation(PA) method. Slight enrichment of tritium observed was attributed to electrolytic enrichment but not to the formation of a by-product of cold fusion. The extent of recombination of D$_2$and $O_2$gases was 32%. Hence the excess heat measured during the electrolysis was considered to be due to the exothermic reaction of recombination but not to nuclear fusion. Lifetime results from the PA measurements on the Pd electrodes indicated that hydrogen atoms could be trapped at dislocations and vacancies in the electrodes and that dislocations were slightly more preferred sites than vacancies. It was also inferred from R parameters that the formation of hydrides was accompanied by generation of mostly dislocations. Doppler broadening results of the Pd electrodes indicated that lattiec defect sites where positrons were trapped first increased and then decreased, and this cycle was repeated as electrolysis continued. It can be inferred from PA measurements on the cold-rolled Pd and the isochronally annealed Pd hydride specimens that microvoid-type defects existed in the hydrogen-charged electrode specimen.

  • PDF

Experimental Study of Characteristics of Three-Ring Impedance Meter and Dependence of Characteristics on Electric Conductivity of Fluids (3-ring 임피던스미터의 유체 전기 전도도 독립성에 대한 실험적 연구)

  • Kim, Jong-Rok;Ahn, Yeh-Chan;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.1027-1033
    • /
    • 2010
  • A two-phase (gas-liquid) flow is a common phenomenon in fluidic systems, e.g., fluidic systems in the electro-magnetic or nuclear power generation industry and in the steel industry. The measurement of a two-phase flow is important for guaranteeing the safety of the system and for achieving the desired performance. The measurement of the void fraction, which is one of the parameters of the two-phase flow that determines the pressure drop and heat transfer coefficient, is very important. The time resolution achieved by employing the impedance method that can be used to calculate the void fraction from the impedance of the fluid is high because the electric characteristics are taken into account. Therefore, this method can be employed to accurately measure the void fraction without distortion of flow in real time by placing electrodes on the walls of the tubes. Coney analytically studied a ring-type impedance meter, which can be employed in a circular tube. The aim of this study is to experimentally verify the robustness of a three-ring impedance meter to variations in the electric conductivity of the fluid; this robustness was suggested by Coney but was not experimentally verified.

Analyses of the Double-Layered Repository Concepts for Spent Nuclear Fuels (사용후핵연료 심지층 처분장 복층개념 분석)

  • Lee, Jongyoul;Kim, Hyeona;Lee, Minsoo;Choi, Heui-Joo;Kim, Kyungsu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.151-159
    • /
    • 2017
  • A deep geological disposal at a depth of 500 m in stable host rock is considered to be the safest method with current technologies for disposal of spent fuels classified as high-level radioactive waste. The most important requirement is that the temperature of the bentonite buffer, which is a component of the engineered barrier, should not exceed $100^{\circ}C$. In Korea, the amount of spent fuel generated by nuclear power generation, which accounts for about 30% of the total electricity, is continuously increasing and accumulating. Accordingly, the area required to dispose of it is also increasing. In this study, various duplex disposal concepts were derived for the purpose of improving the disposal efficiency by reducing the disposal area. Based on these concepts, thermal analyses were carried out to confirm whether the critical disposal system requirements were met, and the thermal stability of the disposal system was evaluated by analyzing the results. The results showed that upward 75 m or downward 75 m apart from the reference disposal system location of 500 m depth would qualify for the double layered disposal concept. The results of this study can be applied to the establishment of spent fuel management policy and the design of practical commercial disposal system. Detailed analyses with data of a real disposal site are necessary.

Estimation of THI Index to Evaluate Thermal Stress of Animal-occupied Zone in a Broiler House Using BES Method (BES 기법을 이용한 육계사 내부 고온 스트레스 평가를 위한 THI 지수 모의)

  • Ha, Taehwan;Kwon, Kyeong-seok;Hong, Se-Woon;Choi, Hee-chul;Lee, Jun-yeob;Lee, Dong-hyun;Woo, Saemee;Yang, Ka-young;Kim, Rack-woo;Yeo, Uk-hyeon;Lee, Sangyeon;Lee, In-bok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.75-84
    • /
    • 2018
  • Thermal stress of livestock has been issued due to recent climate change trends and this causes reproductive disorders, decreased feed consumption, immunosuppression, and increased mortality of animals. Concept of THI has been widely used to quantitatively evaluate the degree of thermal stress for animals, however use of this concept is restricted for animals living in the enclosed facilities such as mechanically ventilated broiler houses. In this study, time-based internal energy flow and variation trends of temperature and humidity were analyzed based on BES technique. Local weather data, insulation characteristics of building materials, heat and moisture generation rate from broilers according to age, algorithm of ventilation operation were adopted for boundary condition of the model to accurately compute THI values inside the mechanically ventilated broiler house. From the BES computation, excess frequency of THI threshold in Jeju city was highest on the assumption that air conditioning equipments were not installed. When general raising density ($39kg\;m^{-2}$) was adopted, total 2,191 hours were exceeded. Excess hours of THI threshold were strongly related to the cumulative air temperature ($R^2=0.87$).

A Study on the Generation of Ultrasonic Binary Image for Image Segmentation (Image segmentation을 위한 초음파 이진 영상 생성에 관한 연구)

  • Choe, Heung-Ho;Yuk, In-Su
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.6
    • /
    • pp.571-575
    • /
    • 1998
  • One of the most significant features of diagnostic ultrasonic instruments is to provide real time information of the soft tissues movements. Echocardiogram has been widely used for diagnosis of heart diseases since it is able to show real time images of heart valves and walls. However, the currently used ultrasonic images are deteriorated due to presence of speckle noises and image dropout. Therefore, it is very important to develop a new technique which can enhance ultrasonic images. In this study, a technique which extracts enhanced binary images in echocardiograms was proposed. For this purpose, a digital moving image file was made from analog echocardiogram, then it was stored as 8-bit gray-level for each frame. For an efficient image processing, the region containing the heat septum and tricuspid valve was selected as the region of interest(ROI). Image enhancement filters and morphology filters were used to reduce speckle noises in the images. The proposed procedure in this paper resulted in binary images with enhanced contour compared to those form the conventional threshold technique and original image processing technique which can be further implemented for the quantitative analysis of the left ventricular wall motion in echocardiogram by easy detection of the heart wall contours.

  • PDF

Discussion of Preliminary Design Review for MIRIS, the Main Payload of STSAT-3

  • Han, Won-Yong;Jin, Ho;Park, Jang-Hyun;Nam, Uk-Won;Yuk, In-Soo;Lee, Sung-Ho;Park, Young-Sik;Park, Sung-Jun;Lee, Dae-Hee;Ree, Chang-H.;Jeong, Woong-Seob;Moon, Bong-Kon;Cha, Sang-Mok;Cho, Seoung-Hyun;Rhee, Seung-Woo;Park, Jong-Oh;Lee, Seung-Heon;Lee, Hyung-Mok;Matsumoto, Toshio
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.27.1-27.1
    • /
    • 2008
  • KASI (Korea Astronomy and Space Science Institute) is developing a compact wide-field survey space telescope system, MIRIS (The Multi-purpose IR Imaging System) to be launched in 2010 as the main payload of the Korea Science and Technology Satellite 3. Through recent System Design Review (SDR) and Preliminary Design Review (PDR), most of the system design concept was reviewed and confirmed. The near IR imaging system adopted short F/2 optics for wide field low resolution observation at wavelength band 0.9~2.0 um minimizing the effect of attitude control system. The mechanical system is composed of a cover, baffle, optics, and detector system using a $256\times256$ Teledyne PICNIC FPA providing a $3.67\times3.67$ degree field of view with a pixel scale of 51.6 arcsec. We designed a support system to minimize heat transfer with Muti-Layer Insulation. The electronics of the MIRIS system is composed of 7 boards including DSP, control, SCIF. Particular attention is being paid to develop mission operation scenario for space observation to minimize IR background radiation from the Earth and Sun. The scientific purpose of MIRIS is to survey the Galactic plane in the emission line of Pa$\alpha$ ($1.88{\mu}m$) and to detect the cosmic infrared background (CIB) radiation. The CIB is being suspected to be originated from the first generation stars of the Universe and we will test this hypothesis by comparing the fluctuations in I (0.9~1.2 um) and H (1.2~2.0 um) bands to search the red shifted Lyman cutoff signature.

  • PDF