• Title/Summary/Keyword: Heat Flux(열유속)

Search Result 470, Processing Time 0.029 seconds

A Study on Heat Flux Characteristics of Tubular Quartz Lamp for Thermal Load Design of High Temperature Structural Test (석영 가열램프의 열 유속 특성 파악을 통한 고온 구조시험의 열 하중 설계에 관한 연구)

  • Kim, Junhyeok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.355-363
    • /
    • 2022
  • Development of supersonic flying vehicle is one of the most latest issue in modern military technology. Specifically, structural integrity of supersonic flying vehicle can be verified by high temperature structural test. High temperature structural test is required to consider thermal load caused by aerodynamic heating while applying structural load simultaneously. Tubular quartz lamps are generally used to generate thermal load by emitting infrared radiation. In this study, modified heat flux model of tubular quartz lamp is proposed based on existing model. Parameters of the proposed model are optimized upon measured heat flux in three dimensions. Finally, thermal load of plate specimen is designed by the heat flux model. In conclusion, it is possible to predict heat flux applied on plate specimen and desired thermal load of high temperature structural test can be obtained.

Experimental Investigation of the LRE Thrust Chamber Regenerative Cooling(II) (액체로켓엔진 추력실의 재생냉각에 관한 실험적 연구(II))

  • Kim Jung-Hun;Jeong Hae-Seung;Park Hee-Ho;Chung Yong-Gab;Kim Sun-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.3
    • /
    • pp.1-9
    • /
    • 2004
  • We conducted the firing test with the regenerative cooling LRE and calculated the heat flux from measured coolant temperature, that was compared with the heat flux predicted by previously developed numerical analysis method. The difference between the measured heat flux and the numerical calculation value was within nine percents. Therefore, developed numerical analysis method can be applied to the design/fabrication of a real LRE system. and, it was investigated that combustion pressure and mixture ratio have an Influence on the heat flux with a constant relation.

Fabrication and evaluation of a micro heat flux sensor using thermopile (열전대를 이용한 미세 열유속 센서의 제작 및 평가)

  • Kim Jung-Hoon;Kim Bum-Seok;Cho Hyung-Hee;Kim Yong-Jun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1210-1213
    • /
    • 2005
  • Micro heat flux sensor is used in various industries to measure heat flux. In this study, a micro heat flux sensor is fabricated using the MEMS (Micro Electro Mechanical Systems) techniques. The fabricated sensor is composed in thermopile for sensor and SU-8 for thermal resistance layer. The new method of fabrication SU-8 is proposed in this study. The sensitivity is $44\;\mu{V/(W/cm^2)}$ at steady state and Reynolds number is 91322.

  • PDF

An Experimental Study on Heat Transfer Characteristics of Synthetic Gas($H_2/CO$)Air Premixed Flames in an Impinging Jet Burner - Part 1 : Stretched Lift-off Flames (충돌제트 버너에서 합성가스($H_2/CO$) 공기 예혼합 화염의 열전달 특성에 관한 실험적 연구 - Part 1 : 스트레치된 부상 화염)

  • Kang, Ki-Joong;Jo, Joon-Ik;Lee, Kee-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.453-456
    • /
    • 2011
  • An experimental investigation of the heat transfer characteristics of stretched premixed flames using Synthetic gas has been performed. Hydrogen and carbon mon-oxide which could be extracted from coal gasification process are the main fuel of synthetic-gas. Heat flux at the stagnation point was increased as global strainrate was increased, then the heat flux was decreased when a global strainrate reached a sudden point. Heat flux at the stagnation point is also affected by nozzle to impingement distance. Heat flux was increased as nozzle to impingement place distance was increased. This study is a foundation study of practical use of secondary gases from coals.

  • PDF

A Study on the High Temperature Region Heat Transfer Coefficients for the Spray Cooling of Hot Flat Plates (평판 분무냉각 시의 고온역 열전달계수에 관한 연구)

  • Yoon, D.H.;Oh, C.;Yoon, S.H.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.25-32
    • /
    • 2000
  • In this paper, experiments investigating the high-temperature region heat transfer coefficients for the spray cooling of hot flat plates were performed by down spray water using flat spray nozzles. The heat transfer surface is made of copper and is 100mm in length and 40mm in width and 15mm in thickness. The experimental condition of spray are as follows: temperatures of the water droplets are T=20~$80^{\circ}C$ and droplets volume fluxes are D=0.001565~0.010438$m^3/m^2s$. Next, correlating equations for the heat transfer characteristics of spray cooling in the high temperature region are developed from the effects of droplets volume flux and the surface temperature of heat transfer plate.

  • PDF

Transient Analysis of Pressure Behavior of Cryogenics in Closed Vessel (극저온 저장용기의 내부압력 거동에 대한 비정상해석)

  • 강권호;김길정;박영무
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.19-27
    • /
    • 1996
  • Self-pressurization of cylindrical container of cryogen is numerically analyzed. The container is axi-symmetric and heated from side wall with constant heat flux. Natural convection by external heat flux is studied numerically using finite difference method. Oxygen, nytrogen and hydrogen are working fluids in this paper. Liquid is considered incompressible fluid and vapor is assumed to behave as gas meeting with virial equation of gas. The Second virial coefficients of gas are obtained from Lennard-jones model. The important variables which have effects on self-pressurization are external heat flux, heat capacity of wall and initial ullage in container. The most important variable of them is external heat flux. The pressure rise calculated from the virial gas model is slightly different from that calculated using Ideal gas model for oxygen.

  • PDF

A Study of a Heat Flux Mapping Procedure to Overcome the Limitation of Heat Flux Gauges in Fire Tests (화재실험시 열유속 센서 사용의 단점을 보완한 Heat Flux Mapping Procedure에 관한 연구)

  • Choi, Keum-Ran
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.171-179
    • /
    • 2005
  • It is essential to understand the role of wall lining materials when they are exposed to a fire from an ignition source. Full-scale test methods permit an assessment of the performance of a wall lining material. Fire growth models have been developed due to the costly expense associated with full-scale testing. The models require heat flux maps from the ignition burner flame as input data. Work to date was impeded by a lack of detailed spatial characterization of the heat flux maps due to the use of limited instrumentation. To increase the power of fire modeling, accurate and detailed heat flux maps from the ignition burner are essential. High level spatial resolution for surface temperature can be provided from an infrared camera. The objective of this study was to develop a heat flux mapping procedure for a room test burner flame to a wall configuration with surface temperature information taken from an infrared camera. A prototype experiment was performed using the ISO 9705 test burner to demonstrate the developed heat flux mapping procedure. The results of the experiment allow the heat flux and spatial resolutions of the method to be determined and compared to the methods currently available.

Parametric Study on Heat Flux Characteristics of a Sub-scale Calorimeter (막냉각량 및 작동점 변화가 액체로켓 칼로리미터의 열유속에 미치는 영향)

  • Kim Jong-Gyu;Lee Kwang-Jin;Seo Seong-Hyeon;Han Yeoung-Min;Choi Hwan-Seok;Cho Won-Kook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.346-350
    • /
    • 2005
  • Effects of the changes of a film cooling mass flow rate and operating conditions on the heat flux characteristics of the subscale calorimeter were studied. A film cooling ring with twelve orifices is inserted between the injector head and the calorimeter. The calorimeter is composed of nineteen cooling channels. When a mass flow rate of film cooling is 10.5 % of a main fuel mass flow rate, maximum heat flux at the nozzle throat is decreased by 30% compared to that without film cooling. In the OD3(of-design point) test result, maximum heat flux at the nozzle throat is increased by 31% compared to that of the DP(design point) test when a film cooling flow rate is zero.

  • PDF

Heat Flux Evaluation of KSR-III Sub-scale Chamber (KSR-III 축소형 연소기의 열유속 평가)

  • 조원국;문일윤;김종규
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.81-84
    • /
    • 2004
  • A water-cooled calorimeter chamber with 8 cooling channels based on KSR-III sub-scale chamber has been designed and manufactured. One dimensional empirical correlation has been used at the design stage and full three-dimensional CFD analysis has been conducted to confirm the cooling condition for hot fire test is safe. Predicted heat flux is accurate around the nozzle throat when the thermal resistance of carbon deposit is considered. However relatively large difference is observed in chamber part.