• 제목/요약/키워드: Heat Flow Analysis

검색결과 2,052건 처리시간 0.028초

그루브형 태양열 집열용 히트파이프의 열성능 해석 (Analysis for Thermal Performance of Axially Grooved Heat Pipe for Solar Collector)

  • 홍정규;서정세;변길성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2123-2128
    • /
    • 2004
  • In this study, analysis is made for the effects of groove shape on the thermal performance of a axial groove heat pipe. The mathematical models of two-phase flow in grooved heat pipe are presented for the capillary limitation in steady state. Generally, the heat pipe performance depends on the capillary pressure and liquid flow. The friction force of liquid flow through the groove increases with the groove width decreased, and then the capillary pressure is improved in the gas-liquid interface of groove. Therefore, the optimal groove width shaper exists for the maximum thermal performance of heat pipe. In this paper, the optimal groove shape and scale are presented by considering both capillary pressure and liquid flow.

  • PDF

Research on heat transfer coefficient of supercritical water based on factorial and correspondence analysis

  • Xiang, Feng;Tao, Zhou;Jialei, Zhang;Boya, Zhang;Dongliang, Ma
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1409-1416
    • /
    • 2020
  • The study of heat transfer coefficient of supercritical water plays an important role in improving the heat transfer efficiency of the reactor. Taking the supercritical natural circulation experimental bench as the research object, the effects of power, flow, pipe diameter and mainstream temperature on the heat transfer coefficient of supercritical water were studied. At the same time, the experimental data of Chen Yuzhou's supercritical water heat transfer coefficient was collected. Through the factorial design method, the influence of different factors and their interactions on the heat transfer coefficient of supercritical water is analyzed. Through the corresponding analysis method, the influencing factors of different levels of heat transfer coefficient are analyzed. It can be found: Except for the effects of flow rate, power, power-temperature and temperature, the influence of other factors on the natural circulation heat transfer coefficient of supercritical water is negligible. When the heat transfer coefficient is low, it is mainly affected by the pipe diameter. As the heat transfer coefficient is further increased, it is mainly affected by temperature and power. When the heat transfer coefficient is at a large level, the influence of the flow rate is the largest at this time.

전산모사를 이용한 히트싱크의 열 유동 해석 (Heat flow Analysis of Heat Sink Using the Computational Simulation)

  • 임송철;장시영;김현태;이동헌;강계명
    • 한국재료학회지
    • /
    • 제14권7호
    • /
    • pp.522-528
    • /
    • 2004
  • Heat analysis of the plate type and wave type heat sink were carried out by using computational simulation. The heat resistance and air flow of two heat sink models were analysed according to natural and forced convection condition and positions of fan. When a fan was at the position of z-axis and y-axis in forced convection, the heat resistances of plate type heat sink were $0.17^{\circ}C/W$, and $0.28^{\circ}C/W$ respectively. In the case of wave type heat sink, they were $0.18^{\circ}C/W$ and $0.53^{\circ}C/W$. As the air flow velocities were averagely $0.386\;m/s\~3.269\;m/s$, air flow velocity of plate type heat sink was faster than that of wave type. In this experiment, it was observed that the plate type heat sink showed a good ability of heat radiation comparing with wave type one.

데시칸트 제습기용 열교환기 설계에 관한 수치해석적 연구 (A Numerical Study on the Design of Exchanger for Desiccant Dehumidifier)

  • 김치완;안영철;김길태
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.54-62
    • /
    • 2013
  • A numerical analysis is performed to evaluate mass flow balance in the heat exchanger for the dehumidifier. To improve the mass flow balance for maximum heat transfer performance, inlet, outlet and baffle are changed. Mass flow balance is evaluated by non-uniformity of flow which is the same concept with the standard deviation. Usually, there will occur many paths between the inlet and the outlet, however, it will follow shortest and low resistance ways. The uniform distribution of flow is numerically analyzed for several types of heat exchangers. Making the shortest way between the inlet and the outlet is most important factor. Two types of heat exchangers are installed in the dehumidifier and 4 cases of Type A heat exchangers and 3 cases of Type B heat exchangers are evaluated and optimized. The result of this research is applied to design heat exchanger for commercial dehumidifiers.

Second law thermodynamic analysis of nanofluid turbulent flow in heat exchanger

  • K. Manjunath
    • Advances in Energy Research
    • /
    • 제8권3호
    • /
    • pp.125-136
    • /
    • 2022
  • Entropy generation along with exergetic analysis is carried out using turbulent nanofluid flow in the heat exchanger. To obtain the optimized percentage constituent of nanofluid, the nanofluid volume concentrations is varied for the given input conditions. For different Reynolds number of the fluid and heat capacity rate ratio between the streams, the heat transfer improvements are studied in terms of nano particles diameter. Parametric analysis is carried out for a counterflow heat exchanger using turbulent nanofluid flow with exergetic efficiency along with entropy generation number as performance parameters. The exergetic efficiency provides realistic approach in the design of nanofluid applications in heat exchanger leading to conservation of energy.

경계면 슬립이 적용되는 Plate-Fin Heat Sink 의 최적형상 설계 (Optimal Design of a Plate-Fin Heat Sink with Slip Flow)

  • 박부성;박현진;김보흥
    • 한국정밀공학회지
    • /
    • 제32권2호
    • /
    • pp.219-227
    • /
    • 2015
  • A dehumidifier using a thermoelement has many advantages compare to a dehumidifier using compressor systems. However, it is crucial to optimize the performance of heat sink for improving heat dissipation problem on the heat generation part. In this study, we utilized computational fluid dynamics software to compare Nusselt number, temperature and system efficiency based on fin thickness, flow gap between fin and fin length. Moreover, slip flow on the boundary layer was applied for the further analysis. Our objective in this study is to suggest an optimal fin shape to improve heat transfer with the tendency of performance factor depending on change of the shapes. Our results on the optimization of fin shape and analysis of slip flow will be utilized to enhance the heat transfer in the heat sink which is important in the design of dehumidifier using a thermoelement.

중수로 기기냉각수 열교환기 내부 유동 해석 (Analysis of Internal Flow for Component Cooling Water Heat Exchanger in CANDU Nuclear Power Plants)

  • 송석윤
    • 한국압력기기공학회 논문집
    • /
    • 제8권2호
    • /
    • pp.33-41
    • /
    • 2012
  • The component cooling water heat exchangers are critical components in a nuclear power plant. As the operation years of the heat exchanger go by, the maintenance costs required for continuous operation also increase. Most heat exchangers have carbon steel shells, tube support plates and flow baffles. The titanium tube is susceptible to flow induced vibration. The damage on carbon steel tube support rod and titanium tube around cooling water entrance area is inevitable. Therefore, analysis of internal flow around the component cooling water entrance and tube channel is a good opportunity to seek for failure prevention practice and maintenance method. The numerical study was carried out by FLUENT code to find out the causes of tube failure and its location.

원관 주위의 2차원 전도열전달과 국소 대류열전달 (Two-dimensional Heat Conduction and Convective Heat Transfer a Circular Tube in Cross Flow)

  • 이억수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권1호
    • /
    • pp.25-33
    • /
    • 2005
  • When a circular tube with uniform heat generation within the wall was placed in a cross flow, heat flows by conduction in the circumferential direction due to the asymmetric nature of the fluid flow around the perimeter of the circular tube The circumferential heat flow affects the wall temperature distribution to such an extent that. in some cases, significantly different results may be obtained for geometrically similar surfaces. In the present investigation, the effect of circumferential wall heat conduction is investigated for forced convection around circular tube in cross flow of air and water Two-dimensional temperature distribution $T_w(r,{\theta})$ is calculated through the numerical analysis. The difference between one-dimensional and two-dimensional solutions is demonstrated on the graph of local heat transfer coefficients. It is observed that the effect of working fluid is very remarkable.

V-형 사각리브에 의한 난류열전달 해석 (Analysis of turbulent heat transfer over V-shaped ribs)

  • 이영모;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.169-172
    • /
    • 2005
  • Numerical analysis of turbulent flow in three-dimensional channel with V-shaped ribs extruded on both walls has been carried out. Reynolds-averaged Navier-Stokes are calculated for analysis of fluid flow and heat transfer. Shear stress transport (SST) turbulence model is used as a turbulence closure. Computational results for heat transfer rate show good agreements with experimental data.

  • PDF

인터쿨러용 판형열교환기 내부유로의 유동현상에 관한 전산유체해석 (CFD Analysis for the Flow Phenomena of the Narrow Channels in Plate Heat Exchanger for Intercooler)

  • 윤천석;한승한
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.91-100
    • /
    • 2004
  • Plate heat exchangers (PHE) have been widely used in different industrial applications, because of high heat transfer efficiency per unit volume. Basic study is performed for PHE to the application of intercooler in automobile. In order to understand the flow phenomena in the plate heat exchanger, a channel which was formed by the upper and lower plate in single plate was considered as calculation domains. Because chevrons attached on the upper plate are brazed with chevrons attached on the lower plate, the flow channel has very complex configuration. This complex geometry was analyzed by Fluent. In order to validate this methodology the proper experimental and theoretical data are collected and compared with numerical results. Finally, due to the lack of experimental values for PHE to the application of intercooler, various chevron angles and air velocities at inlet were tested in terms of physical phenomena. From this point of view, results of velocity vector, path lines, static pressure, heat flux, heat transfer coefficient, and Nusselt number are physically reasonable and accepted for the solutions. From these results, the correlations for pressure drop and Nusselt number with respect to chevron angle and Reynolds number in specific PHE are obtained for the design purpose. Thus, the methodology of the flow analysis in the full geometry of the channel was established for the predictions of performance in plate heat exchanger.