• Title/Summary/Keyword: Heat Environment

Search Result 2,482, Processing Time 0.026 seconds

ABSORBED HEAT-FLUX METHOD FOR GROUND SIMULATION OF ON-ORBIT THERMAL ENVIRONMENT OF SATELLITE

  • Kim, Jeong-Soo;Chang, Young-Keun
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.177-190
    • /
    • 1999
  • An absorbed heat-flux method for ground simulation of on-orbit thermal environment of satellite is addressed in this paper. For satellite ground test, high vacuum and extremely low temperature of deep space are achieved by space simulation chamber, while spatial environmental heating is simulated by employing the absorbed heat-flux method. The methodology is explained in detail with test requirement and setup implemented on a satellite. Developed heat-load control system is presented with an adjusted PID-control logic and the system schematic realized is shown. A practical and successful application of the heat simulation method to KOMPSAT(Korea Multi-purpose Satellite)thermal environmental test is demonstrated, finally.

  • PDF

A Study on the Relation of Urban Heat Island and Air Pollution in Seoul Area (서울지역의 도시열섬현상과 대기오염도의 관계에 관한 연구)

  • 장영기;김정욱
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.49-53
    • /
    • 1991
  • Relations of urban heat island and air pollution are analyzed by using $SO_2$ concentration data (winter season in 1985) from 10 sites of Seoul area and differences of wind speed and air temperature in urban and rural area. Urban heat island is developed when daily mean wind speed at urban site is lower than 1.5m/sec or in the interval of 3.0 $\sim$ 3.5m/sec. When differences between urban and rural air temperature is greater than the overall average of those differences, $SO_2$ concentrations of those above-average differences are 1.3 $\sim$ 1.8 times higher than those of below-average differences. The trends are shown obviously at north-eastern area of Seoul (Gilum Dong, Ssangmun Dong, Myeonmog Dong). When intensity of Urban Heat Island is weak, $SO_2$ concentration was reduced in propotion to a rise of wind speed. But $SO_2$ concentration is on the partial increase in spite of a rise of wind speed when intensity of urban heat island is strong.

  • PDF

Development of comfort algorism for Indoor temperature chagne in Heating System (변동환경 대응을 위한 난방System의 쾌적 알고리즘 개발)

  • Kim, Dong-Gyu;Jeong, Yong-Hyun;Kum, Jong-Soo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.18 no.3
    • /
    • pp.229-235
    • /
    • 2006
  • This study investigated physiology and psychological response of subjects, when heat pump was operated long time within comfort temperature range. Eight subjects were participated for the experiment. Their age was from 22 to 25 years old. The results of this experiment will propose basic data for improving comfort control algorithm in fluctuating environment by using heat pump. When indoor temperature was controlled by heat pump, the conclusion was as follows. 1) When votes of subjects was considered, the thermal comfort neutrality or lower range helped formation of comfort sensation for subjects. 2) When room temperature was lower, thermal comforts of shoulder, knee and foot with subjects thermal comfort showed high correlation. And when room temperature was higher, thermal comfort of face region with subjects thermal comfort showed high correlation. 3) The necessity of temperature change after 50 minutes from initially operating heat pump demands the additional analysis against the physiological signal.

Virtual Machine Placement Algorithm for Saving Energy and Avoiding Heat Islands in High-Density Cloud Computing Environment (고밀도 클라우드 컴퓨팅 환경에서 에너지 절감 및 열섬 방지를 위한 가상 머신 배치 알고리즘)

  • Choi, JungYul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.10
    • /
    • pp.1233-1235
    • /
    • 2016
  • It is desirable to place virtual machines for minimizing the number of operational servers in order to save energy in high-density cloud computing environment. However, the compacted servers can incur heat islands. This paper firstly finds out the relationship between the server utilization by the virtual machine placement and the energy consumption of servers and heat from servers. Then, this paper proposes a virtual machine placement algorithm to save energy consumed and avoid heat islands.

Analysis of Heat Transfer Characteristics in Response to Water Flow Rate and Temperature in Greenhouses with Water Curtain System (수막하우스의 유량 및 수온에 따른 열전달 특성 분석)

  • Kim, Hyung-Kweon;Kim, Seoung-Hee;Kwon, Jin-Kyeong
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.270-276
    • /
    • 2016
  • This study analysed overall heat transfer coefficient, heat transmission, and rate of indoor air heating provided by water curtain in order to determine the heat transfer characteristic of double-layered greenhouse equipped with a water curtain system. The air temperatures between the inner and outer layers were determined by the water flow rate and inlet water temperature. Higher water flow rate and inlet water temperature resulted in the increased overall heat transfer coefficient between indoor greenhouse air and water curtain. However, it was found that with higher levels of water flow rate and inlet water temperature, indoor overall heat transfer coefficient was converged about $10W{\cdot}m^{-2}{\cdot}^oC^{-1}$. The low correlation of overall heat transfer coefficient between water curtain and air within double layers was likely because the combination of greenhouse shape, wind speed and outdoor air temperature as well as water curtain affected the heat transfer characteristics. As water flow rate and inlet water temperature increased, the heat transferred into the greenhouse by water curtain also tend to rise. However it was demonstrated that the rate of heat transmission from water curtain into greenhouse with water curtain system using underground water was accounted for 22% to 28% for total heat lost by water curtain. The results of this study which quantify heat transfer coefficient and net heat transfer from water curtain may be a good reference for economical design of water curtain system.

Heat Exchanger Design of a Heat Pump System Using the Heated Effluent of Thermal Power Generation Plant as a Heat Source for Greenhouse Heating (화력발전소의 온배수를 열원으로 이용하는 시설원예 난방용 히트펌프 시스템의 열교환기 설계기준 설정)

  • Ryou, Young Sun;Kang, Youn Ku;Jang, Jae Kyung;Kim, Young Hwa;Kim, Jong Goo;Kang, Geum Chun
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.372-378
    • /
    • 2012
  • This study was carried out in order to determine the optimum length of a roll type PE pipe heat exchanger employed in the water-to-water heat pump system using the waste heat of the heated effluent flowed out from thermal power generation plants as a heat source. And the heat pump system of 30 RT for an experimental test was designed and manufactured. And also PE pipes were employed to recover the waste heat from the heated effluent. The inside diameter of PE pipe heat exchanger was 20 mm, the thickness was 2 mm and the diameter of a roll was 1,000 mm. And from the results of this study, we found that the optimum length of PE pipe heat exchanger was 75 m per the heat pump capacity of 1.0 RT (3.51 kW) and then the heating COP of heat pump system was 3.8.

A study on the Heat Transfer Performance according to Ground Heat Exchanger Types (지중열교환기의 종류에 따른 열전달 성능에 관한 연구)

  • Hwang, SuckHo;Song, Doosam
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.75-80
    • /
    • 2010
  • Generally, ground-source heat pump (GSHP) systems have a higher performance than conventional air-source systems. However, the major fault of GSHP systems is their expensive boring costs. Therefore, it is important issue that to reduce initial cost and ensure stability of system through accurate prediction of the heat extraction and injection rates of the ground heat exchanger. Conventional analysis methods employed by line source theory are used to predict heat transfer rate between ground heat exchanger and soil. Shape of ground heat exchanger was simplified by equivalent diameter model, but these methods do not accurately reflect the heat transfer characteristics according to the heat exchanger geometry. In this study, a numerical model that combines a user subroutine module that calculates circulation water conditions in the ground heat exchanger and FEFLOW program which can simulate heat/moisture transfer in the soil, is developed. Heat transfer performance was evaluated for 3 different types ground heat exchanger(U-tube, Double U-tube, Coaxial).

Performance Evaluation of Protective Clothing Materials for Welding in a Hazardous Shipbuilding Industry Work Environment (조선업의 유해 작업환경 대응을 위한 용접 보호복 소재의 성능평가 연구)

  • Kim, Min Young;Bae, Hyun Sook
    • Fashion & Textile Research Journal
    • /
    • v.15 no.3
    • /
    • pp.452-460
    • /
    • 2013
  • This study conducted a performance evaluation of protective clothing materials used for welding in a hazardous shipbuilding industry work environment. The welding process was selected as the one that most requires industrial protective clothing according to work environment characteristics. Flame proofing and convection heat protection performance (HTI) in the heat transfer characteristics of protective clothing material were indicated in the order of SW1(Oxidant carbon)>SW2(silica coated Oxidant carbon)>SW4(Oxidant carbon/p-aramid)>SW3(flame proofing cotton). However, radiant heat protection performance (RHTI) and the heat transfer factor (TF) were indicated in the order of SW1>SW4>SW2>SW3 and showed different patterns from the convection heat protection performance. SW1 showed superior air permeability and water vapor permeability. The tensile strength and tear strength of welding protective clothing material were indicated in the order of SW4>SW2>SW3>SW1 and showed that a blend fabric of p-aramid was the most superior for the mechanical properties of SW4. SW1 had excellent heat transfer properties in yet met the minimum performance requirements of tensile strength proved to be inappropriate as being a material for welding protective clothing. The abrasion resistance of woven fabric proved superior compared to nonwoven fabric; however, seam strength and dimensional change both met the minimum performance requirements and indicated that all samples appeared non-hazardous. Finally, oxidant carbon/p-aramid blend fabric appeared appropriate as a protective clothing materials for welding.

Local Adaptation Plan to Climate Change Impact in Seoul: Focused on Heat Wave Effects (서울시 기후변화 영향평가 및 적응대책 수립: 폭염영향을 중심으로)

  • Kim, Eunyoung;Jeon, Seong-Woo;Lee, Jung-Won;Park, Yong-Ha;Lee, Dong-Kun
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.71-80
    • /
    • 2012
  • Against the backdrop of the clear impact of climate change, it has become essential to analyze the influence of climate change and relevant vulnerabilities. This research involved evaluating the impact of heat waves in Seoul, from among many local autonomous bodies that are responsible for implementing measures on adapting to climate change. To carry out the evaluation, the A1B scenario was used to forecast future temperature levels. Future climate scenario results were downscaled to $1km{\times}1km$ to result in the incorporation of regional characteristics. In assessing the influence of heat waves on people-especially the excess mortality-we analyzed critical temperature levels that affect excess mortality and came up with the excess mortality. Results of this evaluation on the impact of climate change and vulnerabilities indicate that the number of days on which the daily average temperature reaches $28.1^{\circ}C$-the critical temperature for excess mortality-in Seoul will sharply increase in the 2050s and 2090s. The highest level of impact will be in the month of August. The most affected areas in the summer will be Songpa-gu, Gangnam-gu, and Yeongdeungpo-gu. These areas have a high concentration of residences which means that heat island effects are one of the reasons for the high level of impact. The excess mortality from heat waves is expected to be at least five times the current figure in 2090. Adaptation plan needs to be made on drawing up long-term adaptation measures as well as implementing short-term measures to minimize or adapt the impact of climate change.

Comparison of Thermal Environment between Inland and Coastal Cities in Gyeongbuk during the Heat Wave of 2018 - Comparison between Daegu and Pohang - (2018년 폭염 기간 동안 경북의 내륙과 해안 도시 간 열 환경 비교 - 대구와 포항의 비교 -)

  • Choo, Sung-Hyun;An, Eun-Ji;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.30 no.8
    • /
    • pp.621-628
    • /
    • 2021
  • The characteristics of time changes in air temperature, DI (discomfort index) and WBGT (wet-bulb globe temperature) were investigated for inland city (daegu) and coastal city (pohang) of Gyeongbuk Province during the 2018 consecutive heat wave season. The time when the temperature dropped below 33℃ was around 19h in both regions. As such, the two regions were similar with respect to the time up to which the heatwave warning levels continued. However, the discomfort index (DI) was higher than 27 in Pohang. Most people feel unpleasant when an discomfort index of 27 or higher appears. The results indicated that Korea's night-time thermal environment during the summers is particularly poor in the southern coastal areas. WBGT began at 09:00 and lasted until 21:00, with a score of 31 or higher; this score, in principle, corresponded with the duration of outdoor activity in both regions. Therefore, it was found that outdoor work was at a level where all day long had to be stopped in both areas during the heat wave. Although time changes in temperature and WBGT were similar in both regions, Discomfort Index (DI) differed significantly. The difference refers to the fact that Pohang is strongly affected by the high heat capacity effect and the supply of water vapor from the sea.