• Title/Summary/Keyword: Heat Demand

Search Result 487, Processing Time 0.028 seconds

Study on the Mechanical Properties of PET Fiber and the Adiabatic Properties of PET Fabrics by their Adiabatic Material Contents (단열성 재료 함량에 따른 PET 원사의 기계적 물성 및 직물의 단열성에 관한 연구)

  • Tae Yoon Kim;Sun Min Kwon;See Hyeon Chae;Ye Dam Jeong;Hyun Je Cho;Ik Sung Choi;Jongwon Kim
    • Textile Coloration and Finishing
    • /
    • v.35 no.2
    • /
    • pp.128-136
    • /
    • 2023
  • Recently, the automobile industry is developing as the demand for automo- biles increases due to industrial development and population growth. In addition, many studies are being conducted to reduce heat loss inside the automobiles in order to save energy inside the automobiles due to environmental regulations. In this study, alumina, nanosilicon, and aerogel, which are adiabatic materials, were filled in PET to manufacture yarn, identify physical and mechanical properties, and weave into fabric to confirm adiabatic performance. As the content of the adiabatic material increased, the tensile strength of the fibers filled with alumina and nanosilicon decreased greatly, and the adiabatic property slightly increased. The tensile strength of fibers filled with the aerogel decreased slightly, but the adiabatic properties were greatly increased. Therefore, it is considered to be due to the large volume fraction in the PET yarn due to the low density of the aerogel.

An Integrated Analysis of Recent Changes in Year-on-Year Consumer Price Index and Aggregate Import Price Index in Republic of Korea through Statistical Inference

  • Seok Ho CHANG;Soonhui LEE
    • Asia-Pacific Journal of Business
    • /
    • v.14 no.1
    • /
    • pp.365-379
    • /
    • 2023
  • Purpose - Our previous study (Chang & Lee, 2023) presented observations on the recent changes in the year-on-year (YoY) Consumer Price Index (CPI) of the Republic of Korea (ROK) after the COVID-19 pandemic. The purpose of this article is to present an integrated analysis and interpretation of the recent changes in CPI and the Aggregate Import Price Index (IPI) by incorporating recent data, specifically data from September 2022 to December 2022. Design/methodology/approach - This study collected CPI (YoY) data in the ROK from January 2019 to December 2022 using e-National Indicator System provided by the ROK. Statistical analysis was employed to analyze the data. Findings - First, we confirm the extended results of the existing study by Chang and Lee (2023). Second, we demonstrate that the Aggregate IPI in ROK increased significantly in 2022 compared to 2021. We then provide an integrated interpretation on the significant increase in CPI and aggregate IPI in ROK, which complements Chang and Lee (2023) that limits their discussion to YoY CPI. Moreover, we show that the IPI of the semiconductor in ROK decreased significantly in 2022 compared to 2021. Research implications or Originality - Our results provide important insights into the recent changes in the CPI in the ROK. The results suggest that these changes can be partially attributed to various factors, such as the global supply chain disruptions resulting from the spread of the COVID-19 pandemic and the prolonged war between Russia and Ukraine, the side effect of quantitative easing by the US Federal Reserve, heat waves and droughts caused by climate change in ROK, a surge in demand following a gradual daily recovery, US-China trade conflict, etc. Our study shows statistically comprehensive results compared to the studies that limit their discussion to YoY average growth rate.

Growth and Quality Characteristics in Response to Elevated Temperature during the Growing Season of Korean Bread Wheat

  • Chuloh Cho;Han-Yong Jeong;Yulim Kim;Jinhee Park;Chon-Sik Kang;Jong-Min Ko;Ji-Young Shon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.124-124
    • /
    • 2022
  • Wheat (Triticum aestivum L.) is the major staple foods and is in increasing demand in the world. The elevated temperature due to changes in climate and environmental conditions is a major factor affecting wheat development and grain quality. The optimal temperature range for winter wheat is between 15~25℃, it is necessary to study the physiological characteristic of wheat according to the elevated temperature. This study presents the effect of elevated temperature on the yield and quality of two Korean bread wheat (Baekkang and Jokyoung) in a temperature gradient tunnel (TGT). Two bread wheat cultivars were grown in TGT at four different temperature conditions, i.e. TO control (near ambient temperature), T1 control+1℃, T2 control+2℃, T3 control+3℃. The period from sowing to heading stage has accelerated, while the growth properties including culm length, spike length and number of spike, have not changed by elevated temperature. On the contrary, the number of grains per spike and grain yield was reduced under T3 condition compared with that of control condition. In addition, the. The grain filling rate and grain maturity also accelerated by elevated temperature (T3). The elevating temperature has led to increasing protein and gluten contents, whereas causing reduction of total starch contents. These results are consistent with reduced expression of starch synthesis genes and increased gliadin synthesis or gluten metabolism genes during late grain filling period. Taken together, our results suggest that the elevated temperature (T3) leads to reduction in grain yield regulating number of grains/spike, whereas increasing the gluten content by regulating the expression of starch and gliadin-related genes or gluten metabolism process genes expression. Our results should be provide a useful physiological information for the heat stress response of wheat.

  • PDF

A Survey on the Utilization and Demand of Thermotherapy Devices in Korean Medical Institutions (한방의료기관의 온열 치료 기기 활용 현황 및 개발 수요에 대한 조사 연구)

  • So-Young In;Su-Ran Lim;Ji-Yeun Park;Jung-Hwan Park;Song-Yi Kim
    • Korean Journal of Acupuncture
    • /
    • v.40 no.4
    • /
    • pp.194-205
    • /
    • 2023
  • Objectives : This study investigated the current utilization status of thermotherapy devices in Korean medicine (KM) institutions and identified areas for improvement and further development, as perceived by KM doctors (KMDs). Methods : An online survey was conducted, targeting KMDs primarily engaged in clinical patient care. The questionnaire included items about respondents' clinical practices, the extent of thermotherapy device usage, their opinions on these devices, and perceived improvement needs. The collected data underwent quantitative analysis. Results : From the 1,025 respondents, data from 862 respondents who provided complete responses were analyzed. On average, respondents utilized thermotherapy treatments for 80% of their patients. Infrared (IR) phototherapy unit, electrical moxibustion apparatus, and heater-based thermotherapy devices were predominantly owned by respondents, with IR being the most frequently used. The average satisfaction score for current thermotherapy devices was 79. A significant concern raised was the necessity for improved health insurance coverage and efficacy evaluation. Conclusions : This research has confirmed that the extensive use of thermotherapy devices by KMDs in treating primarily musculoskeletal and gastrointestinal ailments - common conditions among patients in KM institutions. The main areas identified for improvement encompass safety, cost-effectiveness, and device efficacy. Future enhancements in thermotherapy devices should address these crucial aspects.

Study on the Microstructure Evolution during Extrusion of Zn-Al-Mg alloy (Zn-Al-Mg 합금의 압출 시 미세조직 변화에 관한 연구)

  • W. G. Seo;K. Thool;H. N. Lee;D. J. Yang;S. G. Park;S. H. Choi
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.344-351
    • /
    • 2023
  • The use of Zn-Al-Mg alloy coatings for enhancing the corrosion resistance of steel sheets is gaining prominence over traditional Zn coatings. There is a growing demand for the development of thermal spray wires made from Zn-Al-Mg alloys, as a replacement for the existing wires produced using Al and Zn. This is particularly crucial to secure corrosion resistance and durability in the damaged areas of coated steel sheets caused by deformation and welding. This study focuses on the casting and extrusion processes of Zn-2Al-1Mg alloy for the fabrication of such spray wires and analyzes the changes in microstructure during the extrusion process. The Zn-2Al-1Mg alloy, cast in molds, was subjected to a heat treatment at 250 ℃ for 3 hours prior to extrusion. The extrusion process was carried out by heating both the material and the mold up to 300 ℃. Microstructural analysis was conducted using FE-SEM and EDS to differentiate each phase. The mechanical properties of the cast specimen were evaluated through compression tests at temperatures ranging from 200 to 300 ℃, with strain rates of 0.1 to 5 sec-1. Vickers hardness testing was utilized to assess the inhomogeneity of mechanical properties in the radial direction of the extruded material. Finite Element Analysis (FEA) was employed to understand the inhomogeneity in stress and strain distribution during extrusion, which aids in understanding the impact of heterogeneous deformation on the microstructure during the process.

Study on the Cooling Mechanism in a Cryogenic Cooling System (극저온 냉각 챔버 내 냉각 메커니즘 연구)

  • SEONGWOO LEE;YOUNGSANG NA;YOUNGKYUN KIM;SEUNGMIN JEON;JUNHO LEE;SUNGWOONG CHOI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.146-151
    • /
    • 2024
  • The demand for research on materials with excellent cryogenic strength and ductility has been increasing, particularly for applications such as liquid hydrogen (20 K) storage tanks. To effectively utilize liquid hydrogen, a system capable of maintaining and operating at 20 K is essential. Therefore, preliminary research and verification of the cooling system are crucial. In this study, a heat transfer analysis was conducted on a cooling system to meet the cryogenic environment requirements for cryogenic hydrogen chamber, which are conducted at liquid helium temperatures (4 K). The cooling mechanism in a helium cooling system was examined using numerical analysis. The numerical cooling trends were compared with experimentally obtained cooling results. The good agreement between numerical and experimental results suggests that the numerical approach developed in this study is applicable over a wide range of cryogenic systems.

Ergonomic Approach through Process Analysis of Delivery Work (택배 배송 작업의 공정분석을 통한 인간공학적 접근 방안)

  • Sejung Lee;Sangeun Jin;Seong Rok Chang
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.1
    • /
    • pp.55-61
    • /
    • 2024
  • In response to the COVID-19 pandemic, the logistics industry in Korea has rapidly been expanding, with offline demand concentrating on online platforms owing to the development of digital infrastructure. This has increased the workload of courier drivers considerably, along with labor intensity. A delivery driver died recently from overwork due to the continuous increase in delivery volume, which raises social concerns. Delivery drivers work long hours, (over 12 hours) and are greatly affected by weather conditions, such as snow, rain, heat waves, and cold waves. In addition, they lack a fixed workplace; perform atypical work handling workpieces of various sizes, weights, and shapes; and spend a large amount of time driving as part of their work. This work involves a high level of tension and requires attention and concentration. Despite the frequency of industrial accidents in the courier industry, studies on safety and health to quantitatively analyze and systematize the work of courier workers are very scarce. Therefore, to define the work process necessary for investigating the harmful factors in delivery service and the work analysis, this study conducted interviews and on-site surveys to analyze the unit work of the delivery service by targeting delivery workers. In other words, a framework of unit work for work analysis was presented to enable research and analysis by considering the aforementioned characteristics of the courier industry. The process was broadly divided into work, transport, storage, delay, and inspection. Work was divided into loading, sorting, unloading, and door subcategories, and transportation was divided into vehicle, cart, and walking subcategories as well as 10 small processes. Moreover, 22 unit works were again drawn by conducting field surveys and interviews. The risk of unit work derived from this study was ergonomically evaluated, and the ergonomic analysis revealed that uploading and transportation were the most dangerous. The results of this study could be used as basic data for preventing industrial accidents among courier workers, whose work has increased with the logistics volume and the development of the logistics industry.

Inplementation of a Hydrogen Leakage Simulator with HyRAM+ (HyRAM+를 이용한 수소 누출 시뮬레이터 구현)

  • Sung-Ho Hwang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.551-557
    • /
    • 2024
  • Hydrogen is a renewable energy source with various characteristics such as clean, carbon-free and high-energy, and is internationally recognized as a "future energy". With the rapid development of the hydrogen energy industry, more hydrogen infrastructure is needed to meet the demand for hydrogen. However, hydrogen infrastructure accidents have been occurring frequently, hindering the development of the hydrogen industry. HyRAM+, developed by Sandia National Laboratories, is a software toolkit that integrates data and methods related to hydrogen safety assessments for various storage applications, including hydrogen refueling stations. HyRAM+'s physics mode simulates hydrogen leak results depending on the hydrogen refueling station components, graphing gas plume dispersion, jet frame temperature and trajectory, and radiative heat flux. In this paper, hydrogen leakage data was extracted from a hydrogen refueling station in Samcheok, Gangwon-do, using HyRAM+ software. A hydrogen leakage simulator was developed using data extracted from HyRAM+. It was implemented as a dashboard that shows the data generated by the simulator using a database and Grafana.

The Effects of amino acid balance on heat production and nitrogen utilization in broiler chickens : measurement and modeling

  • Kim, Jj-Hyuk;MacLeod, Murdo G.
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2004.11a
    • /
    • pp.80-90
    • /
    • 2004
  • Three experiments were performed to test the assumption that imbalanced dietary amino acid mixtures must lead to increased heat production (HP). The first experiment was based on diets formulated to have a wide range of crude protein (CP) concentrations but a fixed concentration of lysine, formulated to be the first-limiting amino acid. In the second (converse) experiment, lysine concentration was varied over a wide range while CP content was kept constant. To prevent the masking of dietary effects by thermoregulatory demands, the third experiment was performed at 30 $^{\circ}C$ with the diets similar to the diets used in the second experiment. The detailed relationships among amino acid balance, nitrogen (N) metabolism and energy (E) metabolism were investigated in a computer-controlled chamber calorimetry system. The results of experiments were compared with the predictions of a computerised simulation model of E metabolism. In experiment 1. with constant lysine and varying CP, there was a 75 % increase in N intake as CP concentration increased. This led to a 150 % increase in N excretion. with no significant change in HP. Simulated HP agreed with the empirically determined results in not showing a trend with dietary CP. In experiment 2, with varying lysine but constant CP, there was a 3-fold difference in daily weight gain between the lowest and highest lysine diets. HP per bird increased significantly with dietary lysine concentration. There was still an effect when HP was adjusted for body weight differences, but it failed to maintain statistical significance. Simulated HP results agreed in showing little effect of varying lysine concentration and growth rate on HP. Based on the results of these two experiments, the third experiment was designed to test the response of birds to dietary lysine in high ambient temperature. In experiment 3 which performed at high ambient temperature (30 $^{\circ}C$), HP per bird increased significantly with dietary lysine content, whether or not adjusted for body-weight. The trend was greater than in the previous experiment (20 $^{\circ}C$).

  • PDF

STUDY ON THE NUISANCE IN THE ANIMAL FARM (축산공해(畜産公害)에 관(關)한 연구(硏究) -양돈업(養豚業)을 중심(中心)으로)

  • Jeon, C.G.;Kim, J.W.;Ra, G.Y.;Kim, K.J.
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.1
    • /
    • pp.233-240
    • /
    • 1975
  • This excrement was conducted to investigate the nuisance of swine excrement. And excrements were collected from 27 heads of swine Euseong swine breeding center and Hongdo-dong swine farm and amounts of faces and urine, nitrogen, phosphorus, and kalium contents and number of parasite were investigated, and for the purpose to clean of excrementing matter, ferment substance and moist soil added to swine excreting matter and floating matter. Heat decresement amount and biological oxygen demand were investigated. And the result obtained were as follows. 1) Average amount of daily excreting faces per swine was 500-2700g from Euseong swine breeding center and 450-2500g from Hongdo-dong swine farm and a mount of excreting urine was 450-4500g from both of farms. The rate of excrements between faeces and urine was 1:1 2) Nitrogen contents were 0.802 ppm in urine and 0.514 ppm in faces, phosphorus were 2.261 % in urine and 0.073% in faeces and kalium contents were 1.094% in and 6.0467% in faeces. 3) Strongyloides ransomi and intestinal modular worm eggs showed the highest of eggs number was the result of observation in parasites, and ascaris showed the next it, whip worm and lung worm showed the lowest. 4) The effect ferment substance additive, amount of dry matter, floating matter, heat decreasement amount and biological oxygen demand was decreased but not significant was appeared. And the effect of moist soil additive, it was more effective that fermented substance additive for the fermentation of swine excrement.

  • PDF