• Title/Summary/Keyword: Heat Deformation

Search Result 971, Processing Time 0.027 seconds

The Pillar Design Variable Determination up of the Vacuum Glazing Panel using FEM (FEM을 이용한 진공유리 패널의 지지대 설계변수 설정)

  • Kim, Jae-Kyung;Jeon, Euy-Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.101-106
    • /
    • 2011
  • There are various methods in the flat panel display manufacture. The cost reduction effect is very big in case of using the screen printing method. The screen printing method is much used in the process of forming PDP barrier and can apply to the process of arranging the pillars for maintaining the vacuum gap of the vacuum glazing panel. The pillar which is one of the core elements for comprising vacuum glazing maintains the vacuum gap overcoming the vacuum pressure difference with the atmospheric pressure generated in vacuum glazing. At the same time, the deformation phenomenon by vacuum pressure is relived. In this paper, by using FEM about three considered in the pillar design and arrangement kinds of limiting factors, the simulation was performed. The pillar optimum arrangement method at within the maximum allowable tensile stress and heat transfer coefficients according to the arrangement try to be presented based upon the analyzed result data review and this validity tries to be verified by FEM.

An Extremely Low Temperature Properties of Wrought Aluminum Alloys (가공용 알루미늄 합금의 극저온 특성)

  • Jung, Chan-Hoi;Kim, Soon-Kook;Lee, Jun-Hee;Lee, Hae-Woo;Jang, Chang-Woo
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.192-197
    • /
    • 2007
  • The effects of immersion time in the liquid nitrogen on the behavior of aluminum alloys used for the hydrogen storage tank of auto-mobile at cryogenic temperature were investigated. With increasing immersion time in the liquid nitrogen, the elongation of AI 5083 alloy at cryogenic temperature decreased because of non-uniform fracture of precipitates on the grain boundary, and the serration also occurred because of discontinuous slip due to rapid decreasing of the specific heat. The mechanical properties of AI 6061 alloy at cryogenic temperature were characterized by uniformed yield strength, tensile strength and elongation regardless of the immersion time in the liquid nitrogen. These mechanical properties of aluminum alloys at cryogenic temperature were interpreted by the strength of grain boundary and the slip deformation behavior.

Advanced In-Vessel Retention Design for Next Generation Risk Management

  • Kune Y. Suh;Hwang, Il-Soon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.713-718
    • /
    • 1997
  • In the TMI-2 accident, approximately twenty(20) tons of molten core material drained into the lower plenum. Early advanced light water reactor (LWR) designs assumed a lower head failure and incorporated various measures for ex-vessel accident mitigation. However, one of the major findings from the TMI-2 Vessel Investigation Project was that one part of the reactor lower head wall estimated to have attained a temperature of 1100$^{\circ}C$ for about 30 minutes has seemingly experienced a comparatively rapid cooldown with no major threat to the vessel integrity. In this regard, recent empirical and analytical studies have shifted interests to such in-vessel retention designs or strategies as reactor cavity flooding, in-vessel flooding and engineered gap cooling of the vessel Accurate thermohydrodynamic and creep deformation modeling and rupture prediction are the key to the success in developing practically useful in-vessel accident/risk management strategies. As an advanced in-vessel design concept, this work presents the COrium Attack Syndrome Immunization Structures (COASIS) that are being developed as prospective in-vessel retention devices for a next-generation LWR in concert with existing ex-vessel management measures. Both the engineered gap structures in-vessel (COASISI) and ex-vessel (COASISO) are demonstrated to maintain effective heat transfer geometry during molten core debris attack when applied to the Korean Standard Nuclear Power Plant(KSNPP) reactor. The likelihood of lower head creep rupture during a severe accident is found to be significantly suppressed by the COASIS options.

  • PDF

Effect of Microstructure on Dynamic Tensile Characteristics of SPRC440 Sheet (SPRC440 강판재의 미세조직 구성이 동적 인장 특성에 미치는 영향)

  • Lee, S.H.;Rhyim, Y.M.;Lee, J.H.;Kim, I.B.;Kim, Y.D.
    • Transactions of Materials Processing
    • /
    • v.20 no.4
    • /
    • pp.309-315
    • /
    • 2011
  • The behavior of metallic materials at high strain rates shows different characteristics from those in quasi-static deformation. Therefore, the strain rate should be considered when simulating crash events. The objective of this paper is to evaluate the dynamic tensile characteristics of SPRC440 as a function of the volume fraction of phases. As-received SPRC440 is composed of ferrite and pearlite phases. However, ferrite and martensite phases were observed after heat treatment at $730^{\circ}C$ and $780^{\circ}C$ for 5 minutes, as expected by calculations based on the curves from dilatometry tests. High cross-head speed tensile tests were performed to acquire strain-stress curves at various strain rates ranging from 0.001 to $300\;s^{-1}$, which are typical in real vehicle crashes. It was observed that the flow stress increases with the strain rate and this trend was more pronounced in the as-received specimens consisting of ferrite and pearlite phases. It is speculated that the dislocation density in each phase has an influence on the strain rate sensitivity.

Optimization of Bar-to-Bar Similar Friction Welding of Crank Shaft for Motor Vehicle and the Weld Fatigue Strength Properties and its AE Evaluation (자동차 크랭크 軸用 鋼材의 棒對棒 同種材 摩擦熔接의 疲勞强度 特性 및 AE 評價)

  • Oh, Sea-Kyoo;Yang, Hyung-Tae;Kim, Hun-Kyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.74-82
    • /
    • 1999
  • Nowadays, the crank shaft motor vehicle has become essential as the important component. The machining precision was asked for manufacturing the shaft. They could be unstable in the quality by the conventional are welding. Both in-process quailty control and high reliability of the weld are the major concerns in applying friction wlding to the economical and qualified mass-production. No reliable nondestructive monitoring method is avaliable at present to determine the real-time evaluation of automatic production quality control for bar-to-bar friction welding of the crank shaft of O.D 24mm for motor vehicle. This paper, so that, presents the experimental examinations and statistical quantitative analysis of the correlation between the cumulative counts of acoustic emission(AE) during plastic deformation periods of the welding and the tensile strength and other properties of the bar-to-bar welded joints of O.D. 24mm shaft as well as the various welding variables, as a new approach which attempts finally to develop real-time quality monitoring system for friction welding, resulting in practical possiblility of real-time quality control more than 100% joint efficiency showing good weld with no micro structural defects.

  • PDF

A Study on Structural Design of Cryogenic Miniature Globe Valve using Finite Element Method (유한요소법을 이용한 극저온 미니어쳐 글로브 밸브의 구조설계에 관한 연구)

  • Jeong, Ho-Seung;Cho, Jong-Rae;Kim, Jeong-Hwan;Kim, Jung-Ryul;Park, Jae-Hyoun;Kim, Young-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.343-349
    • /
    • 2007
  • This cryogenic miniature globe valve is used to transfer the liquified natural gas which temperature is $-169^{\circ}C$, supplied pressure is 30bar(3.0MPa). In the present work the temperature distribution and thermal deformation is calculated numerical the FE method is useful to predict the thermal matter of cryogenic miniature globe valve. For this reason, to optimum design of the cryogenic miniature globe valve the analysis of the parameter about bonnet has been studied. It's used 3-D modeling to analyze cryogenic globe valve, which is 1/2". Numerical study used 3-D modeling makes a decision of efficient process of product before producing in the factory. A commercial software(ANSYS 10.0) is used in the structural analysis for cryogenic globe valve.

Determination of an Optimum Orbiting Radius for an Oil-Less Scroll Air Compressor

  • Kim, Hyun-Jin;Lee, Yong-Ho;Kwon, Tae-Hun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.4
    • /
    • pp.124-129
    • /
    • 2008
  • Design practice has been made on an oil-less scroll air compressor as an air supply device for a 2 kW fuel cell system where air pressure of 2 bar and flow rate of 120 liter/min are required. Basic structure of the scroll compressor includes double-sided scroll wrap for the orbiting scroll driven by two crankshafts connected to each other by a timing belt. These features can eliminate thrust surface which otherwise would produce frictional heat and jeopardize reliable operation of the orbiting scroll and the scroll element's deformation as well. This study focuses on optimum scroll wrap design; orbiting radius has been chosen as an independent design parameter. As the orbiting radius changes, scroll sizes such as scroll base plate and discharge port diameters change accordingly. Gas compression-related losses and mechanical loss also change with the orbiting radius. With a scroll base plate diameter of 120mm at most and discharge port of at least 10mm, the orbiting radius should be within the range of 2.5-4.0mm. With this range of the orbiting radius, it was estimated by performance analysis that the compressor efficiency reached to a maximum of ${\eta}_c$=96% at the orbiting radius of $r_s$=3.5mm for the scroll wrap height-to-thickness ratio of h/t=5.

Development of Thermal Management System Heater for Fuel Cell Vehicles (연료전지 자동차용 TMS 히터 개발)

  • Han, Sudong;Kim, Sungkyun;Kim, Chimyung;Park, Yongsun;Ahn, Byungki
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.5
    • /
    • pp.484-492
    • /
    • 2012
  • The TMS(Thermal Management System) heater in a fuel cell vehicle has been developed to prevent a decline of fuel cell durability and cold start durability. Main functions of the COD(Cathode Oxygen Depletion) heater are depletion of oxygen in a cathode as heat energy and consumption of electric power for rapid warming up of a fuel cell stack. This paper covers subjects including the design specification of a heater, heater controller for detection of overheat and reliability assessment including coolant pressure cycle test of a heater. To verify the design concept, burst pressure and deformation analysis of plastic housing were carried out. Also, temperature distribution analysis of heater surface and coolant inside of housing were carried out to verify the design concept. By designing the plastic housing instead of a steel housing, the 30% weight lightening and 50% cost reduction were attained. A module-based design of a TMS system including a heater or reducing the watt density of a heater is a problem to be solved in the near future work.

Analysis of Decontamination from Concrete by Microwave Power

  • Zi, Goang-Seup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.603-608
    • /
    • 2004
  • The paper analyzes a scheme of decontamination of radionuclides from concrete structures, in which rapid microwave heating is used to spall off a thin contaminated surface layer. The analysis is split in two parts: (1) The hygrothermal part of the problem, which consists in calculating the evolution of the temperature and pore pressure fields, and (2) the fracturing part, which consists in predicting the stresses, deformations and fracturing. The rate of the distributed source of heat due to microwaves in concrete is calculated on the basis of the standing wave normally incident to the concrete wall with averaging over both the time period and the wavelength because of the very short time period of microwaves compared to the period of temperature waves and the heterogeneity of concrete. The reinforcing bars parallel to the surface arc treated as a smeared steel layer. The microplane model M4 is used as the constitutive model for nonlinear deformation and distributed fracturing of concrete. The aim of this study is to determine the required microwave power and predict whether and when the contaminated surface layer of concrete spalls off. The effects of wall thickness, reinforcing bars, microwave frequencies and power are studied numerically. As a byproduct of this analysis, the mechanism of spalling of rapidly heated concrete is clarified.

  • PDF

Sintering and Consolidation of Silver Nanoparticles Printed on Polyimide Substrate Films

  • Yoon, Sang-Hwa;Lee, Jun-Ho;Lee, Pyoung-Chan;Nam, Jae-Do;Jung, Hyun-Chul;Oh, Yong-Soo;Kim, Tae-Sung;Lee, Young-Kwan
    • Macromolecular Research
    • /
    • v.17 no.8
    • /
    • pp.568-574
    • /
    • 2009
  • We investigated the sintering and consolidation phenomena of silver nanoparticles under various thermal treatment conditions when they were patterned by a contact printing technique on polyimide substrate films. The sintering of metastable silver nanoparticles commenced at 180 $^{\circ}C$, where the point necks were formed at the contact points of the nanoparticles to reduce the overall surface area and the overall surface energy. As the temperature was increased up to 250 $^{\circ}C$, silver atoms diffused from the grain boundaries at the intersections and continued to deposit on the interior surface of the pores, thereby filling up the remaining space. When the consolidation temperature exceeded 270 $^{\circ}C$, the capillary force between the spherical silver particles and polyimide flat surface induced the permanent deformation of the polyimide films, leaving crater-shaped indentation marks. The bonding force between the patterned silver metal and polyimide substrate was greatly increased by the heat treatment temperature and the mechanical interlocking by the metal particle indentation.