• Title/Summary/Keyword: Heat Deformation

Search Result 964, Processing Time 0.029 seconds

Heat transfer coefficients for F.E analysis in warm forging processes (온간 단조 공정에서의 열전달 계수)

  • Kang J. H.;Ko B. H.;Jae J. S.;Kang S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.138-143
    • /
    • 2005
  • Finite Element analysis is widely applied to elevated temperature forging processes and shows a lot of information of plastic deformation such as strain, stress, defects, damages and temperature distributions. In highly elevated temperature deformation processes, temperature of material and tool have significant influence on tool life, deformation conditions and productivities. To predict temperature related properties accurately, adequate coefficients of not only contact heat transfer between material and dies but also convection heat transfer due to coolants are required. In most F.E analysis, too higher value of contact heat transfer coefficient is usually applied to get acceptable temperature distribution of tool. For contact heat transfer coefficients between die and workpiece, accurate values were evaluated with different pressure and lubricants conditions. But convection heat transfer coefficients have not been investigated for forging lubricants. In this research, convection heat transfer coefficients for cooling by emulsion lubricants are suggested by experiment and Inverse method. To verify acquired convection and contact heat transfer coefficients, tool temperature was measured for the comparison between measured tool temperature and analysis results. To increase analysis accuracy, repeated analysis scheme was applied till temperature of the tool got to be in the steady-state conditions. Verification of heat transfer coefficients both contact and convection heat transfer coefficients was proven with good accordance between measurement and analysis.

  • PDF

Study on the Cold Formability of Drawn Dual-Phase Steels (신선 가공된 이상 조직강의 냉간 성형성에 대한 연구)

  • 박경수;최상우;이덕락;이종수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.269-273
    • /
    • 2003
  • There is a growing interest to replace the commercial steels with non-heat treated steels, which does not involve the spheroidization and quenching-tempering treatment. However, Non-heat treated steels should satisfy high strength and good formability without performing heat treatment. Therefore, it is important to investigate optimum materials showing a good combination of strength and formability after the drawing process. In this study, Dual-Phase Steels were studied as candidate materials for non-heat treated steels, which have different martensite morphologies and volume fractions obtained through heat-treatment of intercritical quenching (IcQ), intermediate quenching (ImQ) and step quenching (SQ). The mechanical properties of DP steels were measured by tension and compression tests. Also, the cold formability of three DP steels which have similar tensile strength value was investigated by estimating the deformation resistance and the forming limit. The deformation resistance which is important factor in determining die life was estimated by calculating the deformation energy. And the forming limit was estimated by measuring the critical strain revealing crack initiation at the notch tip of the specimens.

  • PDF

A Study on the Cold Formability of Drawn Dual-Phase Steels (신선 가공된 이상 조직강의 냉간 성형성에 대한 연구)

  • 박경수;최상우;이덕락;이종수
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.84-89
    • /
    • 2004
  • There is a growing interest to replace the commercial steels with non-heat treated steels, which does not involve the spheroidization and quenching-tempering treatment. However, Non-heat treated steels should satisfy high strength and good formability without performing heat treatment. Therefore, it is important to investigate optimum materials showing a good combination of strength and formability after the drawing process. In this study, Dual-Phase Steels were studied as candidate materials for non-heat treated steels, which have different martensite morphologies and volume fractions obtained through heat-treatment of intercritical quenching (IcQ), intermediate quenching (ImQ) and step quenching (SQ). The mechanical properties of DP steels were measured by tension and compression tests. Also, the cold formability of three DP steels which have similar tensile strength value was investigated by estimating the deformation resistance and the forming limit. The deformation resistance which is important factor in determining die life was estimated by calculating the deformation energy. And the forming limit was estimated by measuring the critical strain revealing crack initiation at the notch tip of the specimens.

Thermal Performance of a Printed Circuit Heat Exchanger considering Longitudinal Conduction and Channel Deformation (축방향 열전도와 유로 변형을 고려한 인쇄기판형 열교환기 열적 성능)

  • Park, Byung Ha;Sah, Injin;Kim, Eung-seon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2018
  • Printed circuit heat exchangers (PCHEs) are widely used with an increasing demand for industrial applications. PCHEs are capable of operating at high temperatures and pressure. We consider a PCHE as a candidate intermediate heat exchanger type for a high temperature gas-cooled reactor (HTGR). For conventional application using stainless steels, design and manufacturing of PCHEs are well established. For applications to HTGR, knowledge of longitudinal conduction and deformation of channel is required to estimate design margin. This paper analyzes the effects of longitudinal conduction and deformation of channel on thermal performance using a code internally developed for design and analysis of PCHEs. The code has a capability of two dimensional simulations. Longitudinal conduction is estimated using the code. In HTGR operating condition, about ten percent of design margin is required to compensate thermal performance. The cross-sectional images of PCHE channels are obtained using an optical microscope. The images are processed with computer image process technique. We quantify the deformation of channel with dimensional parameters. It is found that the deformation has negative effect on structural integrity. The deformation enhances thermal performance when the shape of channel is straight in laminar flow regime. It reduces thermal performance in cases of a zigzag channel and turbulent flow regime.

A Study on the Thermal Stress Analysis of a Piston in a Turbocharged Diesel Engine (터보 디젤엔진 피스톤의 열응력 해석에 관한 연구)

  • 국종영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.92-98
    • /
    • 2001
  • We determined the transfer coefficient through the analysis of three dimensional temperature distribution in comparison with the measured temperature on the piston in the turbocharged diesel engine. And we analyzed the thermal stress and the thermal deformation with that heat transfer coefficient by using finite element method. According to this results, we found that maximum tempetature range of the piston appeared at the upper part of the piston crown and that the heat transfer coefficient of the upper part of the piston is smaller than that of the lower one. It showed that the maximum thermal deformation is shown at the edge of the upper part of piston and that the maximum thermal stress was shown on the lower part of the piston crown. Finally, we defined the method of determination of a piston heat transfer analysis by using measured temperature on the piston and analyzed temperature with finite element method.

  • PDF

평면 연삭 가공시 발생하는 연삭열에 관한 연구 -해석적 모델-

  • Kim, Dong-Kil;Nam, Weon-Woo;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.187-194
    • /
    • 2001
  • The objective of this study is to develop a model for the grinding process for predicting the temperature, thermal stress and thermal deformation. The thermal load during grinding is modeled as uniformly distributed, 2D heat source moving across the surface of elastic half space, which is insulated or subjected to convective cooling. That non-dimensional temperature distribution, non-dimensional longitudinal stress distribution and non-dimensional thermal deformation distribution are calculated with non-dimensional heat source half width and non-dimensional heat transfer coefficient. Finite element models are developed to simulate moving heat source, which is modeled as uniformly or triangularly distributed, the FEM simulation is compared with numerical solution.

  • PDF

Changes of Low Cycle Fatigue Behavior of AI-Mg-Si Alloy with Severe Plastic Deformation and Heat Treatment (강소성 가공 및 열처리에 의한 Al-Mg-Si합금의 저주기 피로특성변화)

  • Kim, W.H.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.4
    • /
    • pp.217-222
    • /
    • 2009
  • The effects of severe plastic deformation by equal channel angular pressing (ECAP) and subsequent heat treatment on the low cycle fatigue behaviors of Al-Mg-Si alloy were investigated. The specimens which were peak aged at $175^{\circ}C$ after solution treatment showed cyclic hardening at all strain amplitudes, while the specimens ECAPed after solution treatment showed cyclic softening at all strain amplitudes during fatigue. The specimens aged at $100^{\circ}C$ after ECAP showed slight cyclic hardening. Various changes of cyclic fatigue behavior after severe plastic deformation and/or heat treatment were discussed in terms of the microstructural changes and precipitation conditions.

Thermal Deformation Induced Preload Changein the Tilting Pad Journal Bearing (열변형으로 인한 틸팅패드 저널베어링의 예압 변화)

  • Suh, Junho;Hwang, Cheolho
    • Tribology and Lubricants
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • This paper focuses on the thermal deformation induced preload change in the tilting pad journal bearing, using a three-dimensional (3D) thermo-hydro-dynamic (THD) approach. Preload is considered as a critical factor in designing the tilting pad journal bearing. The initial preload measured under nil external load and nil thermal gradient is influenced by two factors, namely, the thermal deformation and elastic deformation. Thermal deformation is due to a temperature distribution in the bearing pads, whereas the elastic deformation is due to fluid forces acting on the pads. This study focuses on the changes induced in preload and film clearance due to thermal deformation. The generalized Reynolds equation is used to evaluate the force of the fluid and the 3D energy equation is used to calculate the temperature of the lubricant. The abovementioned equations are combined by establishing a relationship between viscosity and temperature. The heat transfer within the bearing pads, the lubricant, and the spinning journal is calculated using the heat flux boundary condition. The 3D Finite Element Method (FEM) is used in modeling the (1) heat conduction in the spinning journal and bearing pads, (2) thermal gradient induced thermal distortion of the spinning journal and pads, and (3) viscous shearing, and heat conduction and convection in a thin film. This evaluation method has an increased fidelity, and it can prove to be a cost-effective tool that can be used by designers to predict the dynamic behavior of a bearing.

Study on the Cold Formability of Drawn Non-heat Treated Steels (신선 가공된 열처리 생략강의 냉간 성형성에 대한 연구)

  • 박경수;박용규;이덕락;이종수
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.364-369
    • /
    • 2003
  • Non-heat treated steels are attractive in the steel-wire industry since the spheroidization and quenching-tempering treatment are not involved during the processing. However, non-heat treated steels should satisfy high strength and good formability without performing heat treatment. Therefore, it is important to investigate optimum materials showing a good combination of strength and formability after the drawing process. In this study, three different steels such as dual phase steel, low-Si steel, and ultra low carbon bainitic steel were used to study their mechanical properties and the cold formability. The cold formability of three steels was investigated by estimating the deformation resistance and the forming limit. The deformation resistance was estimated by calculating the deformation energy, and the forming limit was evaluated by measuring the critical strain revealing crack initiation at the notch tip of the specimens. The results showed that deformation resistance was the lowest in the low-Si steel, and the forming limit strains of ultra low carbon bainitic steel and low-Si steel were higher than that of commercial SWRCH45F steel.

Derivation of Simplified Formulas to Predict Deformations of Plate in Steel Forming Process with Induction Heating (유도가열을 이용한 강판성형공정에서 변형량 예측을 위한 계산식 유도)

  • Bae, Kang-Yul;Yang, Young-Soo;Hyun, Chung-Min;Won, Seok-Hee;Cho, Si-Hoon
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.58-64
    • /
    • 2007
  • Recently, the electro-magnetic induction process has been utilizing to substitute the flame heating process in shipyard. However, few studies have been performed to exactly analyze the deformation mechanism of the heating process with mathematical model. This is mainly due to the difficulty of modeling the inductor travelling on plate during the process. In this study, heat flux distribution of the process is firstly numerically analysed with the assumption that the process has a quasi-stationary state and also with the consideration that the heat source itself highly depends on the temperature of base plate. With the heat flux, the thermal and deformation analyses are then performed with a commercial program for 34 combinations of heating parameters. The deformations obtained and heating parameters are synthesized with a statistical method to produce simplified formulas, which easily give the relation between the heating parameters and deformations. The formulas are well compared with results of experiment.