• Title/Summary/Keyword: Heat Conduction

Search Result 1,042, Processing Time 0.029 seconds

The UV Laser Ablation of Cr film on Glass Substrate (UV레이저를 이용한 Cr 박막의 어블레이션)

  • Yoon, Kyung-Ku;Lee, Seong-Kuk;Kim, Jae-Gu;Choi, Doo-Sun;Whang, Kyung-Hyun;Jung, Jae-Kyoung;Jang, Won-Suk;Na, Suck-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.134-139
    • /
    • 2000
  • In order to understand the removal mechanism and seek the optimal conditions. KrF excimer laser ablation of Cr films on glass substrates is investigated. The surface morphology of the laser-irradiated spot is examined by SEM. The measured single-shot ablation rate is found to be about two times the result of numerical analysis based on a surface vaporization model and heat conduction theory. Surface morphology examination indicates that the Cr film is removed by the sequence of melting-surface vaporization-,melt expulsion by plasma recoil and that the outmost ripple of the diffraction pattern gives a strong effect on the morphology of molten Cr during the melting and vaporization processes. To seek the optimal process parameters for micro patterning morphological investigation is carried out experimentally on samples having different chromium film thicknesses. Optimal processing conditions are determined to enhance the accuracy and quality of thin film removal for micro patterning.

  • PDF

Effect of Surface Film and Surface Roughness on Contact Resistance (표면막과 표면거칠기가 접촉 저항에 미치는 영향)

  • Lee, HyeonCheol;Lee, Bora;Yu, Younghun;Cho, Youngjoo
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.16-23
    • /
    • 2019
  • In this study, we aim to analyze the effects of both contact layer properties and surface roughness on contact resistance. The contact has a great influence on performance in terms of electrical conduction and heat transfer. The two biggest factors determining contact resistance are the presence of surface roughness and the surface layer. For this reason we calculated the contact resistance by considering both factors simultaneously. The model of this study to calculate contact resistance is as follows. First, the three representative surface parameters for the GW model are obtained by Nayak's random process. Then, the apparent contact area, real contact area, and contact number of asperities are calculated using the GW model with the surface parameters. The contact resistance of a single surface layer is calculated using Mikic's constriction equation. The total contact resistance is approximated by the parallel connection between the same asperity contact resistances. The results of this study are as follows. The appropriate thickness with reduction effect for contact resistance is determined according to the difference in conductivity between the base layer and surface layer. It was confirmed that the standard deviation of surface roughness has the greatest influence on surface roughness parameters. The results of this study will be useful for selecting the surface material and surface roughness when the design considering the contact resistance is needed.

Measurement of outgassing rates of Kevlar and S-Glass materials used in torque tubes of High Tc Superconducting (HTS) Motors

  • Thadela, S.;Muralidhar, BVAS;Kalyani, B;Choudhury, UK;Yadav, SN;Rao, V.V.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.11-15
    • /
    • 2018
  • Torque tubes in High Temperature Superconducting (HTS) motor transfer torque from superconducting field winding rotor to the room temperature shaft. It should have minimum heat conduction property for minimizing the load on cryo-refrigerator. Generally, these torque tubes are made with stainless steel material because of high strength, very low outgassing and low thermal contraction properties at cryogenic temperatures and vacuum conditions. With recent developments in composite materials, these torque tubes could be made of composites such as Kevlar and S-Glass, which have the required properties like high strength and low thermal conductivity at cryogenic temperatures, but with a reduced weight. Development and testing of torque tubes made of these composites for HTS motor are taken up at Bharat Heavy Electricals Limited (BHEL), Hyderabad in collaboration with Central Institute of Plastics and Engineering Technology (CIPET), Chennai and Indian Institute of Technology (IIT), Kharagpur. As these materials are subjected to vacuum, it is important to measure their outgassing rates under vacuum conditions before manufacturing prototype torque tubes. The present study focusses on the outgassing characteristics of Kevlar and S-Glass, using an Outgassing Measurement System (OMS), developed at IIT Kharagpur. The OMS facility works under vacuum environment, in which the test samples are exposed to vacuum conditions over a sufficient period of time. The outgassing measurements for the composite samples were obtained using pressure-rise technique. These studies are useful to quantify the outgassing rate of composite materials under vacuum conditions and to suggest them for manufacturing composite torque tubes used in HTS motors.

Effect of Flight Altitude on Minimal Infrared Signature of Combat Aircraft (고도 변화에 따른 전투기 적외선 신호 최소 조건 분석)

  • Nam, Juyeong;Chang, Injoong;Lee, Yongwoo;Kim, Jihyun;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.375-382
    • /
    • 2020
  • Owing to the rapid development of infrared guided weapon systems, the threat to aircraft survivability is constantly increasing, and research on infrared stealth technologies are being conducted to ensure aircraft survival. In this study, we analyze the minimum infrared signature of an aircraft according to its flight altitude by considering the characteristics of infrared guided missiles, which detect the contrast signature between the aircraft and background. We conducted computational fluid dynamics simulations for the convective coefficient, and heat transfer simulations were performed considering convection, conduction, and radiation for flight conditions. Thus, we obtained the surface temperature distribution of the aircraft and analyzed the aircraft infrared signature based on the flow characteristics around it. Furthermore, the optimum emissivity for the minimum infrared signature was derived, and the effect of the infrared signature was analyzed when this optimum emissivity was applied to the fuselage surface for each flight condition.

Characteristics of Electric Resistance Dual Spot Welding Process of AZ31 Magnesium Alloy Sheets (AZ31 마그네슘 합금 판재의 전기저항 이중 스폿용접 특성)

  • Sun, Xiao-Guang;Jin, In-Tai
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.1-11
    • /
    • 2022
  • In this study, an electric resistance dual-spot welding process using a copper electrode inserted in a heating electrode is suggested for the spot welding of AZ31 magnesium sheets. This spot-welding process involves two heating methods for welding at the interfacial zone between the magnesium sheets, one of which is the heating method by thermal conduction from the heating electrode heated by the welding current induced to the steel electrode, and the other heating method uses the electric resistance between the contacted surfaces of the two sheets by the welding current induced to the copper electrode. This welding process includes the welding variables, such as the current induced in the heating electrode and the copper electrode, and the outer diameters of the heating electrode. This is because the heat conducted from the heating electrode can be maintained at a higher temperature in the welding zone, which has a slow cooling effect on the nugget of the melted metal after the welding step. The pressure exerted during the pressing of the magnesium sheets by the heating electrode can be increased around the nugget zone at the spot-welding zone. Thus, it not only reduces the warping effect of the elastoplastic deformation of sheets, but also the corona bond can make it less prone to cracking at the welded zone, thereby reducing the number of nuggets expelled out of the corona bond. In conclusion, it was known that an electric resistance dual spot welding process using the copper electrode inserted in the heating electrode can improve the welding properties in the electric resistance spot welding process of AZ31 magnesium sheets.

Assessment of Voigt and LRVE models for thermal shock analysis of thin FGM blade: A neutral surface approach

  • Ankit Kumar;Shashank Pandey
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.105-118
    • /
    • 2023
  • The present work is an attempt to develop a simple and accurate finite element formulation for the assessment of thermal shock/thermally induced vibrations in pretwisted and tapered functionally graded material thin (FGM) blades obtained from Voigt and local representative volume elements (LRVE) homogenization models, based on neutral surface approach. The neutral surface of the FGM blade does not coincide with its mid-surface. A finite element model (FEM) is developed using first-order shear deformation theory (FSDT) and the FGM turbine blade is modelled according to the shallow shell theory. The top and the bottom layers of the FGM blade are made of pure ceramic and pure metal, respectively and temperature-dependent material properties are functionally graded in the thickness direction, the position of the neutral surface also depends on the temperature. The material properties are estimated according to two different homogenization models viz., Voigt or LRVE. The top layer of the FGM blade is subjected to high temperature and the bottom surface is either thermally insulated or kept at room temperature. The solution of the nonlinear profile of the temperature in the thickness direction is obtained from the Fourier law of heat conduction in the unsteady state. The results obtained from the present FEM are compared with the benchmark examples. Next, the effect of angle of twist, intensity of thermal shock, variable chord and span and volume fraction index on the transient response due to thermal shock obtained from the two homogenization models viz., Voigt and LRVE scheme is investigated. It is shown that there can be a significant difference in the transient response calculated by the two homogenization models for a particular set of material and geometric parameters.

Development and validation of multiphysics PWR core simulator KANT

  • Taesuk Oh;Yunseok Jeong;Husam Khalefih;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2230-2245
    • /
    • 2023
  • KANT (KAIST Advanced Nuclear Tachygraphy) is a PWR core simulator recently developed at Korea Advance Institute of Science and Technology, which solves three-dimensional steady-state and transient multigroup neutron diffusion equations under Cartesian geometries alongside the incorporation of thermal-hydraulics feedback effect for multi-physics calculation. It utilizes the standard Nodal Expansion Method (NEM) accelerated with various Coarse Mesh Finite Difference (CMFD) methods for neutronics calculation. For thermal-hydraulics (TH) calculation, a single-phase flow model and a one-dimensional cylindrical fuel rod heat conduction model are employed. The time-dependent neutronics and TH calculations are numerically solved through an implicit Euler scheme, where a detailed coupling strategy is presented in this paper alongside a description of nodal equivalence, macroscopic depletion, and pin power reconstruction. For validation of the steady, transient, and depletion calculation with pin power reconstruction capacity of KANT, solutions for various benchmark problems are presented. The IAEA 3-D PWR and 4-group KOEBERG problems were considered for the steady-state reactor benchmark problem. For transient calculations, LMW (Lagenbuch, Maurer and Werner) LWR and NEACRP 3-D PWR benchmarks were solved, where the latter problem includes thermal-hydraulics feedback. For macroscopic depletion with pin power reconstruction, a small PWR problem modified with KAIST benchmark model was solved. For validation of the multi-physics analysis capability of KANT concerning large-sized PWRs, the BEAVRS Cycle1 benchmark has been considered. It was found that KANT solutions are accurate and consistent compared to other published works.

An Essay of the Reinforcing Effect of BNNT and CNT: A Perspective on Interfacial Properties (BNNT와 CNT의 강화효과에 대한 복합재 계면물성 관점의 고찰)

  • Seunghwa Yang
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.155-161
    • /
    • 2024
  • Boron nitride nanotubes and carbon nanotubes are the most representative one-dimensional nanostructures, and have received great attention as reinforcement for multifunctional composites for their excellent physical properties. The two nanotubes have similar excellent mechanical stiffness, strength, and heat conduction properties. Therefore, the reinforcing effect of these two nanotubes is greatly influenced by the properties of their interface with the polymer matrix. In this paper, recent comparative studies on the reinforcing effect of boron nitride nanotubes and carbon nanotubes through experimental pull-out test and in-silico simulation are summarized. In addition, the conflicting aspect of the two different nanotubes with structural defects in their side wall is discussed on the viscoelastic damping performance of nanocomposites.

Regeneration of Low Heat - Treated Sciatic Nerve of Rabbit (저온 열처리한 가토 좌골 신경의 재생)

  • Kim, Jae-Do;Kim, Sang-Jin;Jung, Cheoul-Yun;Hong, Young-Gi;Kim, Ghi-Chan
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.3 no.2
    • /
    • pp.80-88
    • /
    • 1997
  • Malignant tumors of extremeties involving major neurovascular structures have been treated by amputation. However recent development of diagnostic tools(CT, MRI etc.), surgical techniques, anticancer chemotherapeutic agents, and radiation techniques allow surgeons to treat malignant tumors in the limb without amputation. It has been reported that a local application of low-heat to the tissue with tumor can kill tumor cells. It is, however, not known if the attendant neural and vascular injuries may be recovered. The present study was, therefore, undertakn to address this question in rabbit sciatic nerves. A low-heat injury to the sciatic nerve was induced by perfusing the nerve with $60^{\circ}C$ saline for 30 minutes and the courses of functional and morphological recovery of the nerve were evaluated for 16 weeks. The results are summerized as follows : 1. In the electromyographic nerve conduction test the average amplitude was markedly attenuated at 4 and 8 weeks after the low-heat treatment, but it progressively increased to the level 89.5% of the control at 16 week post-treatment. The average latency in the control group was 0.62 msec. The latency in the experimental group was much longer than this at 4 and 8 week post-treatment, but it progressively reverted to the control level, showing 0.622 msec at 16 weeks. 2. In the needle EMG, many fibrillation potentials and positive sharp waves were appeared until 8 weeks post-treatment. After 16 weeks, however, no fibrillation potential was observed. 3. In the early phase of post-treatment period, the myelinated nerve fibers contained many vacuoles and the number of myelinated nerve fibers appeared to be considerably reduced. However, as time goes myelinated nerve fibers were regenerated, such that after 16 weeks the histologic appearance of the nerve was similar to that of the control group.

  • PDF

Assessment of Surface Boundary Conditions for Predicting Ground Temperature Distribution (지중온도 변화 예측을 위한 지표면 경계조건 검토)

  • Jang, Changkyu;Choi, Changho;Lee, Chulho;Lee, Jangguen
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.75-84
    • /
    • 2013
  • Soil freezing is a phenomenon arising due to temperature difference between atmosphere and ground, and physical properties of soils vary upon the phase change of soil void from liquid to solid (ice). A heat-transfer mechanism for this case can be explained by the conduction in soil layers and the convection on ground surface. Accordingly, the evaluation of proper thermal properties of soils and the convective condition of ground surface is an important task for understanding freezing phenomenon. To describe convection on ground surface, simplified coefficient methods can be applied to deal with various conditions, such as atmospheric temperature, surface vegetation conditions, and soil constituents. In this study, two methods such as n-factor and convection coefficient for the convective ground surface boundary were applied within a commercial numerical program (TEMP/W) for modeling soil freezing phenomenon. Furthermore, the numerical results were compared to laboratory testing results. In the series of the comparison results, the convection coefficient is more appropriate than n-factor method to model the convective boundary condition.