• Title/Summary/Keyword: Heat Chamber

Search Result 733, Processing Time 0.026 seconds

A Study of Heat Flux According to the Initial Temperature of Combustion Chamber and Blight of Probe in a Constant Volume Combustion Chamber (돌출높이와 초기온도 변화에 따른 연소실 벽면에서의 열유속에 관한 연구)

  • Lee Chi-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1055-1062
    • /
    • 2004
  • As for the Production of internal combustion engines there has been further movement toward development of high Performance engines with improved fuel efficiency as well as a lightweight and a small size. These tendencies help to solve the problems in engines for example, such as thermal load. abnormal combustion and so on. In order to investigate these Problems, a thin film-type probe for measuring instantaneous temperature has been suggested. A method for manufacturing such a probe was established in this study The instantaneous surface temperature of a constant volume combustion chamber was measured by using this probe and the heat flux was obtained through Fourier analysis In order to thoroughly understand the characteristics of combustion. authors measured wall temperature of combustion chamber and calculated heat flux through a cylinder wall while varying the protrusion height of probe. For these Purposes, the instantaneous surface temperature probe was developed. thereby making possible the analysis of instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

A Numerical Simulation of Regenerative Cooling Heat Transfer Processes for the Liquid Propellant Rocket Engine (액체추진제 로켓엔진의 재생냉각 열전달과정 전산모사)

  • 서호원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.54-61
    • /
    • 1998
  • A numerical simulation is attempted for the regenerative cooling heat transfer processes of the liquid propellant rocket engine. The heat transfer from the combustion gases to the thrust chamber wall is called gas side heat transfer. This heat is conducted radially to the coolant through the carbon deposit and metallic wall of thrust chamber Finally, this heat is convected away by the coolant flowing along the passages in the thrust chamber. The equivalence of these three heat fluxes of the above processes is utilized to determine the coolant side wall temperature, gas side wall temperature and the heat flux. When the number and shape(width, height) of coolant passages, the shape(size) of thrust chamber, oxidant and fuel properties, coolant properties, oxidant/fuel mixture ratio, coolant inlet temperature, the thickness of carbon deposit formed along the thrust chamber wall during combustion are given, reasonable radial direction temperature distributions and heat fluxes along the thrust chamber axis are obtained.

  • PDF

A Study of Heat Flux on the Height of an Instantaneous Temperature Probe in a Constant Volume Combustion Chamber (정적 연소기에서 순간온도 프로브의 돌출높이에 따른 열유속에 관한 연구)

  • Lee, C.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.4
    • /
    • pp.216-223
    • /
    • 2003
  • In the production of internal combustion engines, there have been trends to develop the high performance engines with improved fuel efficiency, lighter weights and smaller sizes. This trends help to answer problems related to thermal load and abnormal combustion, etc. in these engines. In order to investigate these problems, a thin film-type probe and its manufacturing method for instantaneously measuring surface-temperatures have been proposed in this study, Instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and heat flux was obtained by Fourier analysis. In order to thoroughly understand the characteristics of combustion, the authors measured the wall temperature of the combustion chamber and computed heat flux through a cylinder wall while varying the protrusion height of the probe have been measured. To achieve the above goals, a instantaneous temperature probe was developed, thereby making possible the analysis of the instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

Control Performance Investigation of Piezoelectric Actuators under Variation of External Heat Environment (외부 열적 환경 변화에 따른 압전작동기 제어성능 열화 고찰)

  • Han, Young-Min;Moon, Byung Koo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.10
    • /
    • pp.707-713
    • /
    • 2015
  • This paper proposes experimental results for control performance deterioration of a piezoelectric actuator under high temperature conditions due to external heat environment. In this work, a heat environment from 30 ℃ to 190 ℃ is established by a heat chamber which is capable of high temperature of heat environment. Inside the heat chamber, an experimental apparatus consisting of the stack type of piezoelectric actuator, laser sensor, gap sensor and temperature sensor is established. After evaluating temperature dependent blocking force, displacement and time response of a piezoelectric actuator inside the heat chamber, tracking control performances are evaluated under various temperature conditions via proportional-integral-derivative(PID) feedback controller. The desired position trajectory has a sinusoidal wave form with a fixed frequency. Control performances are experimentally evaluated at both room temperature and high temperature and presented in time domain.

A Study of Hear Flux and Instantaneous Temperature According to the Initial Tamperature of Combustion Chamber in a Constant Volume Combustion Chamber (연소실 초기온도 변화에 따른 순간열유속에 관한 연구)

  • Lee, Chi-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.3
    • /
    • pp.193-200
    • /
    • 2003
  • In the production of internal combustion engines, there has been a move towards the development of high performance engines with improved fuel efficiency, lighter weight and smaller sizes. These trends help to answer problems in engines related to thermal load and abnormal combustion. In order to investigate these problems, a thin film-type probe for instantaneously measuring temperatures has been suggested. A method for manufacturing such a probe was established in this study. The instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and the heat flux was obtained through Fourier analysis. In order to thoroughly understand the characteristics of combustion, the authors measured the wall temperature of the combustion chamber and computed heat flux through a cylinder wall while varying the protrusion height of the probe. For achieving the above goals, a instantaneous temperature probe was developed, thereby making possible the analysis of the instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

  • PDF

Heat transfer characteristics around a circular combustion chamber of kerosene fan heater (석유 팬 히터의 연소실 주변 열전달 특성)

  • Kim, Jang-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.551-561
    • /
    • 1998
  • This paper was studied to understand the characteristics of heat transfer coefficients and surface temperature distributions around a circular combustion chamber within the heat-intercept duct of kerosene fan heater. The experiment was carried out in the heat-intercept duct of kerosene fan heater attached to the blow-down-type subsonic wind tunnel with a test section of 240 mm * 240 mm * 1200 mm. The purpose of this paper was to obtain the basic data related with normal combustion for new design from conventional kerosene fan heater, and to investigate the effect of surface temperature, local and mean heat transfer coefficients versus flow-rate of convection axial fan according to the variations of heat release conditions from kerosene fan heater during normal combustion. Consequently it was found that (i) the revolution of convection axial fan during combustion had a smaller value than that of non-combustion because of the thermal resistance due to the high temperature in the heat-intercept duct, (ii) the pressure ratio P$_{2}$/P$_{1}$ had a comparatively constant value of 0.844 according to the revolution increase of turbo fan and the heating performance of kerosene fan heater had a range of 1,494 ~ 3,852 kcal/hr, (iii) the local heat transfer coefficient around a circular combustion chamber had a comparatively larger scale in the range of 315 deg. < .theta. < 45 deg. than that in the range of 90 deg. < .theta. < 270 deg. as a result of heat transfer difference between front and back of a circular combustion chamber, and (iv) the mean heat transfer coefficient around a circular combustion chamber increased linearly like a H$_{m}$=95.196Q+104.019 in condition of high heat release according to the increase of flow-rate of axial fan.n.

Heat Loss to Combustion Chamber Wall During Laminar Flame Propagation (층류화염전파중의 연소실 벽면으로의 열손실)

  • 이상준;한동호;김문헌;이종태;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1398-1407
    • /
    • 1992
  • The prediction of heat loss during laminar flame propagation was carried out by measurement of gas pressure and visualization of flame propagation in the constant volume combustion chamber. And to validate the prediction, the instantaneous temperature at wall of combustion chamber was also measured. Consequently, it was found that heat loss was increased according to increasing of maximum flame travel distance, but rate of heat loss for heat release during laminar flame propagation was nearly constant. And heat loss depends on heat transfer area which was contacted the wall by burned gas regardless to spark plug location.

Thermal analysis inside a small chamber including radiation (미소 챔버 내 복사열전달을 수반한 열유동 해석)

  • Lee, Hyung-Sik;Do, Gi-Jung;Lee, Sang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.194-198
    • /
    • 2006
  • In this study, numerical modeling was performed to analyze air flow including radiation heat transfer inside a small chamber. Characteristics of heat transfer between source plate and target through glass are investigated for various surface temperature of heat source plate with buoyancy effect due to gravity force. Conduction heat transfer through the glass is considered and heat source plate is assumed to be a black body. Target surface temperature is largely affected by the radiation heat transfer. It can also be seen that as the source temperature increases target surface is dominated by radiation rather than convective heat transfer by air.

  • PDF

Transient Thermal Analysis on Wall Temperature Change of Rocket Engine Combustion Chamber Considering Film-Cooling (막냉각을 고려할 때 로켓엔진 연소실 벽면 온도변화에 대한 비정상 열해석)

  • Ha, Seong-Up;Lee, Seon-Mi;Moon, Il-Yoon;Lee, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.37-46
    • /
    • 2012
  • The calculation model for heat transfer analysis of rocket engine combustion chamber considering film-cooling has been established. Convective, radiative heat transfers and film-cooling effect in combustion chamber were evaluated using empirical equations especially for rocket engine combustors, and for heat transfer outward from chamber wall general convective and radiative equations were applied. Structural grid has been generated inside chamber wall for FVM calculations, and transient thermal analyses were carried out by time-marching techniques. LOx/kerosene rocket engine with chamber pressure of 50 bar has been analysed, and it is shown that, in that case, the film-cooling less than 4% remarkably contributes to reduce wall temperature, but the effect of the effect of film-cooling more than about 4% is not significantly increased.

A Study on the Ignition Characteristics at Constant Volume Combustion Chamber of LPG (LPG 정적연소실내 점화특성에 관한 연구)

  • 박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.75-82
    • /
    • 2004
  • The allowable exhaust standard has been intensified as a part of the countermeasure to decrease air pollution in the world. As the cars with an alternative fuel starts to get into the spotlight, the cars with low emission has been introduced and exhaust gas regulation forced in this country. These days, LPG vehicles, which infrastructure of fuel was already built up, and CNG vehicles are recognized for alternative fuel cars in this country. In this study, the constant volume combustion chamber was manufactured and used for experiments to obtain the ignition characteristics of LPG fuel and the optimal ignition energy. The experiment measured the combustion characteristics, in regard to the change of combustion variable, and the change of ignition energy. During the combustion of fuel, the maximum temperature inside the combustion chamber is higher when the initial pressure is higher. The burning velocity also seems to have the same characteristic as the temperature. However, the heat flux did not change much with the theoretical correct mixture but the various initial temperature of the combustion chamber. The heat flux got faster and ignition energy bigger as the dwell time of the ignition system expanded. When the dwell time get longer, the ignition energy also increased then fixed. The ignition energy increased as the initial pressure inside the combustion chamber higher. The heat flux got faster as the dwell time expanded.