• Title/Summary/Keyword: Heat Chamber

Search Result 733, Processing Time 0.029 seconds

Analysis of Heat Exchanging Performance of Heat Recovering Device Attached to Exhaust Gas Duct (열회수장치에 의한 열회수성능 분석)

  • 서원명;윤용철;강종국
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.212-222
    • /
    • 2000
  • This study was performed to investigate the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. The experimental heat recovery system is mainly consisted of LPG combustion chamber and two heat recovery units; unit-A is attached directly to the exhaust gas flue, and unit-B is connected with unit-A. Heat recovery performance was evaluated by estimating total energy amounts by using enthalpy difference between two measurement points together with mass flow rate of gas and/or air passing through each heat recovery unit depending on 5 different flow rates controlled by voltage meter. The results of this experimental study, such as heat exchange behavior of supply air tubes and exhaust air passages crossing the tubes, pressure drop between inlet and outlet, heat recovery performance of exchange unit, etc., will be used as fundamental data for designing optimum heat recovery device to be used for fuel saving purpose by reducing heat loss amounts mostly wasted outside of greenhouse through flue.

  • PDF

Combustion Characteristics of Landfill Gas in Constant Volume Combustion Chamber for Large Displacement Volume Engine (I) - Fundamental Characteristics - (대형기관 모사 정적연소실에서 매립지 가스의 연소특성에 대한 연구 (I) - 기초 특성 -)

  • Ohm, Inyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.733-741
    • /
    • 2013
  • This is the first paper on the combustion characteristics of landfill gas in a constant volume combustion chamber for a large displacement volume commercial engine, and it discusses the fundamental characteristics of fuel from the viewpoint of thermochemistry and thermodynamics and compares these results with experimental ones. The results show that the final pressures obtained from theoretical analysis vary under the same heating value owing to the change in the constant volume specific heat owing to the difference in the burned gas composition according to the fuel gas compositions; furthermore, the stoichiometric ratios and trends of analytical and experimental pressures coincide very well, although some minor differences are observed between the two. The root cause of the difference is the heat transfer, which changes the specific heat and lowers the temperature considerably, in the real combustion process. In addition, the large chamber volume and ignition position promote the heat transfer to the wall. Finally, the fuel conversion efficiency increases as the methane mol fraction decreases, and it is maximum when the stoichiometric ratio ranges from 0.8 to 0.9. These increases due to the composition and stoichiometric ratio could sufficiently compensate the decrease due to the specific heat ratio drop, LFG might be more advantageous than pure methane in a real engine.

Numerical Analysis of Combustion and Heat Transfer of Domestic Gas Boiler Equipped with 2-stage Heat Exchanger (수치해법을 이용한 2단 열교환기 장착 가정용 보일러 연소실의 연소 및 열전달 특성 해석)

  • Kang, Seung-Kyu;Choi, Kyoung-Suhk;Kwon, Jeong-Rack
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.5
    • /
    • pp.1-6
    • /
    • 2010
  • In this work, a numerical investigation is performed for the combustion chamber of domestic gas boiler with 1-stage and 2-stage heat exchangers. The fluid flow and heat transfer performance is simulated with a structure change of heat exchanger. The numerical solution shows that the heat transfer of the 2-stage heat exchanger is about 24% higher than that of the 1-stage heat exchanger, while the pressure loss of the 2-stage heat exchanger increases. The temperature of combustion chamber with 2-stage heat exchanger is lower than that of 1-stage. This effect reduces thermal NOx with decrease of high temperature staying time of the combustion gas.

Analysis of Flow and Heat Transfer in Swirl Chamber for Cooling in Hot Section (고온부 냉각을 위한 스월챔버내의 유동 및 열전달 해석)

  • Lee K. Y.;Kim H. M.;Han Y. M.;Lee S. Y.
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.9-16
    • /
    • 2002
  • Most of modem aerospace gas turbines must be operated at a gas temperature which is several hundreds of degrees higher than the melting temperatures of the materials used in their construction. Complicated cooling schemes need to be employed in the combustor walls and in the high pressure turbine stages. Internal passages are cast or machined into the hot sections of aero-gas turbine engines and air from the compressor is used for cooling. In many cases, the cooling system is engineered to utilize jets of high velocity air, which impinge on the internal surfaces of the components. They are categorized as 'Impinging Cooling Method' and 'Vortex Cooling Method'. Specially, research of new cooling system(Vortex Cooling Method) that overcomes inefficiency of film cooling and limitation of space. The focus of new cooling system that improves greatly cooling efficiency using less amount of cooling air on surface heat transfer elevation. Therefore, in this study, a numerical analysis has been peformed for characteristics of flow and heat transfer in the swirl chamber and compared with the flow measurements by LDV. Especially, for understanding high heat transfer efficiency in the vicinity of wall, we considered flow structure, vortex mechanism and heat transfer characteristics with variation of the Reynolds number.

A Study on the Effects of Ignition Systems on the Heat Release Rate and Mass Fraction Burnt at a Constant Volume Combustion Chamber (정적연소기에서 점화장치가 열발생률과 잘량연소율에 미치는 영향에 관한 연구)

  • Song, Jeong-Hun;Lee, Gi-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1486-1496
    • /
    • 2000
  • The initial flame kernel development and flame propagation in a constant volume combustion chamber is analyzed by the heat release rate and the mass fraction burnt. The combustion pressure is measured with a piezoelectric type pressure sensor. In order to evaluate the effects of ignition system and ignition energy on the flame propagation, four different ignition systems are designed and tested, and the ignition energy is varied by the dwell time. Several different spark plugs are also tested and examined to analysis the effects of electrodes on flame kernel development. The results show that the when the dwell time is increased, and when the spark plug gap is extended, heat release rate and the mass burnt fraction are increased. The materials and shapes of electrodes affect the flame development, because they change the energy transfer efficiency from electrical energy to chemical energy. The diameter of electrodes influences not only the heat release rate but also the mass burnt fraction as well.

Characteristics of Heat Transmission Variation by Air Space Thickness and Injected Air Temperature in Air-Inflated Double Layers Film (공기막 이중필름의 공기막 두께와 주입공기 온도에 따른 관류전열량 변화 특성)

  • Kim, Hyung-Kweon;Jeon, Jong-Gil;Paek, Yee;Lee, Sang-Ho;Yun, Nam-Kyu;Yoo, Ju-Yeol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.121-125
    • /
    • 2013
  • This study was carried out to provide a valuable reference which could reduce heating loss of air-inflated double PO film. Therefore, this study was aimed to choose the best air space thickness and injected air temperature. The characteristics of heat transmission variation at experimental materials were measured and analysed in the laboratory. The experiment was conducted of two layers of PO film, each 0.15 mm tick, sandwiching 110, 175, 225 mm of inflated air with 1 m sides. Environmental control lab was constantly controlled with $-10^{\circ}C$ and experiment chamber was constantly changed with 0, 5, 10, $15^{\circ}C$. The analysis of heat transfer showed that heat transmission does not have a direct correlation with Air Space thickness and injected air temperature. But when inside and outside temperature difference of chamber was great, supply of outside air to Air Space had an advantage at reduction of heating load. It was required to examine accurate analysis at a real greenhouse.

Effects of a Four-week Clothing Program for Improving Vascular Compliance on Heat Tolerance (혈압 관리를 위한 4주간의 착의훈련이 고혈압 전단계자의 내열성에 미치는 영향)

  • Choi, Jeong-Wha;Park, Joon-Hee
    • The Korean Journal of Community Living Science
    • /
    • v.22 no.3
    • /
    • pp.445-454
    • /
    • 2011
  • This study was performed on 5 prehypertensive male participants to investigate the effects of the clothing program for improving the vascular compliance on heat tolerance. The clothing program means the alternate stimulation of the temperature using clothes. The participants wore two different garments with $1.5^{\circ}C$ difference in the temperature inside clothing in a climatic chamber ($18.8{\pm}0.2^{\circ}C$, $38{\pm}3%RH$) alternately for 4 weeks. Heat tolerance tests were conducted in the climatic chamber of $35.2{\pm}0.5^{\circ}C$, $54{\pm}3%RH$ before and after the clothing program. The results were as follows. The $\overline{T}$sk, Tr and heart rate were lower in the post test than in the pre test (p<.01). The whole body and local sweat rates as well as systolic and diastolic blood pressures had reduced the tendencies in the post test. Participants felt less wet and more comfortable in the post test than in the pre test(p<.01). These results showed that the clothing program through the alternate stimulation of the temperature positively affected the improvement of heat tolerance.

Experimental Study on Kerosene Heat Transfer Characteristics Using Simulating Cooling Channels (모사 냉각채널을 이용한 케로신 열전달 특성에 대한 실험적 연구)

  • Lee, Bom;Lee, Wongoo;Song, Yoonho;Hwang, Donghyun;Ahn, Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.643-646
    • /
    • 2017
  • In a liquid rocket engine using hydrocarbon fuels, cooling of the combustion chamber wall is necessary to prevent the combustion chamber wall from melting or structurally deforming due to high heat flux. Among the various methods, regenerative cooling, which uses fuel as a coolant and then injects it into the combustion process, has good performance. This study investigated the heat transfer characteristics of kerosene as a coolant by varying the copper cross-sectional area, the flow rate in the channel, and the current applied to the channel. Convective heat transfer occurred rapidly when the cross-sectional area of the copper channel was small and when the kerosene flow velocity was fast.

  • PDF

Vacuum Characteristic of a Chamber Made of Mild Steel

  • Park, Chongdo;Ha, Taekyun;Cho, Boklae
    • Applied Science and Convergence Technology
    • /
    • v.24 no.4
    • /
    • pp.84-89
    • /
    • 2015
  • The base pressure and outgassing rate of a mild steel chamber were measured and compared to those of a stainless steel chamber. A combined sputter-ion and non-evaporable getter pump with a nominal pumping speed of 490 l/s generated the base pressure of $2.7{\times}10^{-11}$ mbar in the mild steel chamber and $1.2{\times}10^{-10}$ mbar in the stainless steel chamber. The rate-of-rise measurements show that the mild steel has an extremely low outgassing rate of $2.6{\times}10^{-13}$ mbar $ls^{-1}cm^{-2}$, which is about one-order of magnitude smaller than the outgassing rate of the stainless steels. Vacuum annealing of the mild steel at $850^{\circ}C$ reduced the outgassing rate further to $8.8{\times}10^{-14}$ mbar $ls^{-1}cm^{-2}$, which was comparable to the outgassing rate of a heat treated stainless steel for extreme-high vacuum use.

Scale-up of Melting Chamber for a Pyrolysis Melting Incinemtion System (폐기물 열분해/용융 소각 시스템의 용융로 Scale-up 연구)

  • Yang, Won;Kim, Bong-Keun;Yu, Tae-U;Jeun, Keum-Ha
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.168-175
    • /
    • 2007
  • Ash melting chamber is one of the key facility of the pyrolysis-melting incineration system, and it should be designed and operated very carefully for avoiding solidification of slag. In this study, an example of numerical and experimental scale-up process of the melting chamber, in which high speed air is injected to the molten slag and generates bubbles, which enhances agitation of the slag and char combustion, is presented. Cold flow test, combustion and melting test in a lab-scale (30 kg/hr) chamber and a pilot scale (200 kg/hr) chamber. Minimum energy for maintaining molten slag is derived, and it was found that the molten slag can be maintained efficiently by concentrating heat into the bubbling slag.

  • PDF