• Title/Summary/Keyword: Heat & Mass Balance

Search Result 123, Processing Time 0.024 seconds

Numerical Study on the 300 MW Shell-type One-stage Entrained Flow Coal Gasifier Apllied with 4-Layer Slagging Model (4-Layer Slagging Model을 적용한 300 MW급 Shell형 1단 분류층 석탄 가스화기 전산수치해석)

  • Hong, Jung-Woo;Jeong, Hyo-Jae;Song, Ji-Hoon;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • A slag building simplified model was developed to determine wall heat flux of a Shell 300 MW coal gasifier. In the model 4 layers(particulate, sintered, molten slag, solidified slag) were considered and mass conservation and energy balance were used to obtain each slag layer's thickness and surface temperature. Thermo-chemical and fluid charateristics of the gasifier were studied with and without considering the slag model using commercial CFD code FLUENT. Consideration of the slag layer did not affect syn-gas mole fractions. However, the slag layer caused to increase the exit gas temperature by about 50 K.

Thermodynamic Performance Evaluation of an Integration Design between the Combined-cycle and Air Separation Unit in an IGCC Power Plant (IGCC 발전 플랜트에서 복합발전공정-공기분리장치의 연계에 관한 열역학적 성능 평가)

  • Won, On Nu-ri;Kim, Hyun-jeong;Park, Sung-koo;Na, Jong-moon;Choi, Gyung-min;Kim, Duck-jool
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.49-51
    • /
    • 2012
  • In this paper, the integration issue, such as an air-side integration design between the gas turbine and air separation unit, is described and analyzed by the exergy and energy balance of the combined-cycle power block in an IGCC power plant. The results showed that the net power of the system was almost same, but that of the gas turbine was decreased as the integration degree increased. The highest exergy loss was occurred in the combustor of gas turbine, which was affected by the chemical reaction, heat conduction, mass diffusion, and viscous dissipation.

  • PDF

A Study on the Performance Analysis of Automotive Air Conditioning System (자동차용 에어컨 시스템의 성능해석에 관한 연구)

  • 이대웅;유성연
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.304-314
    • /
    • 2002
  • Performance analysis of the automotive air-conditioning system is conducted by using computer simulation, and performance tests are carried out by using the climate wind tunnel in order to verify simulation. Evaporator and condenser were modeled by using empirical correlation which was obtained from calorimeter data, and compressor was modeled by using map based method. The steady state thermodynamic conditions of refrigerant satisfying mass and energy balance were assumed in the simulation program for automotive airconditioning system. The system performance was analyzed by finite difference method until differential air enthalpy between evaporator inlet and outlet becomes converged. Simulation results are in good agreement with experimental results at most operating conditions. Variation of discharge temperature and pressure of compressor, outlet temperature of evaporator, cooling capacity, and COP were investigated in term of air volume flow rate for evaporator, compressor capacity, compressor speed, superheat of thermostatic expansion valve, and diameter of suction line.

A Study on Thermal Environment Analysis of a Greenhouse (시설원예용 난방온실의 온열환경 분석에 관한 연구)

  • Song, Lei;Park, Youn Cheol
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.3
    • /
    • pp.15-20
    • /
    • 2018
  • To study the effects of solar energy in a greenhouse, outdoor air temperature and wind speed on inside air temperature, a simulation model for forecasting the greenhouse air temperature was conducted on the basis of the energy and mass balance theory. Application of solar energy to the greenhouse is major area in the renewable energy research and development in order to save energy. Recently, considering the safety and efficiency of the heating of greenhouse, clean energy such as geothermal and solar energy has received much attention. The analysed greenhouse has $50m^2$ of ground area which located in jocheon-ri of Jeju Province. Experiments were carried out to collect data to validate the model. The results showed that the simulated air temperature inside a plastic greenhouse agreed well with the measured data.

Comparison of the Product Properties between Combustion Analysis and Measurement (보일러 연소해석시와 측정시의 연소가스 중량 및 체적비교)

  • Jang, Suck-Won;Rhim, Sang-Kyu;Jung, Hoon;Lee, In-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.368-372
    • /
    • 2003
  • There arc two methods to evaluate the combustion product, that is analysis method and measurement method. Properties of the combustion products, constituents, and quanties, can be used to calculate boiler efficiency and beat losses. Using combustion evaluation methods combustion calculation were performed at certain condition and analyze the results. In this paper by comparing the results between two methods, deviation, correction and possibility of site application were confirmed

  • PDF

Simultaneous Consolidation of Titanium Diboride with Self-Propagating High-Temperature Synthesis, Direct Contact-Heating, and Pressure: Modeling of Temperature Distribution and the Relationship between Applied Energy and Densification ($TiB_2$ SHS 및 직접 접촉가열에 의한 동시 가압법 : 온도분포 모델링 및 공급에너지와 치밀화 관계)

  • Chung, G.K.;Cho, K.;Lee, H.B.
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.817-824
    • /
    • 1995
  • TiB2 was simultaneously synthesized and densified with concurrent self-propagating high-temperature synthesis and direct contact-heating by electrcial power input and pressure. Density of TiB2 synthesized by self-propagating high-temperature synthesis and consolidated simultaneously by direct contact-heating and pressure was maximum 80% of the theoretical density (4.52g/㎤). Temperature profile was analyzed by solving heat balance equation with numerical method (FTCS method). The temperature of the sample was sufficiently raised to that temperature sufficient to be densified. It was ascertained that the density of the SHS synthesized TiB2 is exponentially proportinal to the input thermal energy per mass.

  • PDF

Transient Characteristics of Fuel Cell Stack at Continuous Current Discharge (일정 전류에서 연료전지의 비정상 특성)

  • Park, Chang Kwon;Jeong, Kwi Seong;Oh, Byeong Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.3
    • /
    • pp.195-206
    • /
    • 2003
  • Polymer electrolyte membrane fuel cells(PEMFC) are very interesting power source due to high power density, simple construction and operation at low temperature. But they have problems such as high cost, improvement of performance and effect of temperature. This problems can be approached using mathematical models which are useful tools for analysis and optimization of fuel cell performance and for heat and water management, in this paper, transient model consists of various energy terms associated with fuel cell operation using the mass and energy balance equation. And water transfer in the membrane is composed of back diffusion and electro-osmotic drag. The temperature calculated by transient model approximately agreed with the temperature measured by experiment in constant current condition.

Effects of Freezing Conditions on the Concentration-Efficiency in the Progressive Freeze-Concentration (Progressive Freezing에 의한 동결 농축법에 있어서의 농축효과에 미치는 동결조건의 영향)

  • 배승권
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.6
    • /
    • pp.984-989
    • /
    • 1995
  • The concentration-efficiencyh of blue dextran solution in the progressive freeze-concentration was related to the freezing conditions such as the freezing speed and the stirring speed in the solution phase. From the theoreticla balance equation of heat and mass transfer at freezing front, the relationship between the freezing conditions and the ice structure at freezing front was drived. A high freeze-concentration efficiency was obtained under the operating conditions represented by a low speed of freezing and a high speed of stirring. The operating conditions were related to a smooth solid-liquid interface and these results were well explained by the theoretical equation. Effect of the solute component size on the concentration efficiency in the progressive freezeconcentration was also tested. The concentration efficiency of latex particles showed a lower value than that of blue dextran, however, its difference was insignificant.

  • PDF

Simulation and Process Design of Pervaporation Plate-and-Frame Modules f3r Dehydration of Organic solvents (유기용매 탈수를 위한 투과증발 판틀형 모듈의 전산모사와 공정설계)

  • C. K. Yeom;Majid Kazi;Fakhir U. Baig
    • Membrane Journal
    • /
    • v.12 no.4
    • /
    • pp.226-239
    • /
    • 2002
  • A process simulation model of pervaporation process has been developed as a design tool to analyse and optimize the dehyhration of organic solvents through a commercial scale of pervaporative plate-and-frame modules that contain a stack of membrane sheets. In the simulation model, the mass balance, the heat balance and the concentration balance are integrated in a finite elements-in-succession method to simulate the overall process. In the integration method, a feed channel between membrane sheets in the modules was taken as differential unit element volume to simplify calculation procedure and shorten computing time. Some of permeation parameters used in the simulation model, were quantified directly from the dehydration experiment of ethanol through $AzeoSep^{TM}$-2002 membrane which is a commercial pervaporation membrane. The simulation model was verified by comparing the simulated values with experimental data. Using the model, continuous and batch pervaporation processes were simulated, respectively, to acquire basic data for analysing and optimizing in the dehydration of ethanol through the membrane. Based on the simulation results, a comparison between the continuous and the batch pervaporation processes would be discussed.

A Study on the Optimum Mix Proportion of the Mass Concrete Designed as Massive and Deep Structure

  • Kwon Yeong-Ho;Lee Hwa-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.293-302
    • /
    • 2005
  • This study describes data from determination of the optimum mix proportion and site application of the mass concrete placed in bottom slab and side wall having a large depth and section as main structures of LNG in-ground tank. This concrete requires low heat hydration, excellent balance between workability and consistency because concreting work of LNG in-ground tank is usually classified by under-pumping, adaptation of longer vertical and horizontal pumping line than ordinary pumping condition. For this purpose, low heat Portland cement and lime stone powder as cementitious materials are selected and design factors including unit cement and water content, water-binder ratio, fine aggregate ratio and adiabatic temperature rising are tested in the laboratory and batch plant. As experimental results, the optimum unit cement and water content are selected under $270kg/m^3$ and $l55{\~}l60 kg/m^3$ separately to control adiabatic temperature rising below $30^{\circ}C$ and to improve properties of the fresh and hardened concrete. Also, considering test results of the confined water ratio($\beta$p) and deformable coefficient(Ep), $30\%$ of lime stone powder by cement weight is selected as the optimum replacement ratio. After mix proportions of 5cases are tested and compared the adiabatic temperature rising($Q^{\infty}$, r), tensile and compressive strength, modulus of elasticity, teases satisfied with the required performances are chosen as the optimum mix design proportions of the side wall and bottom slab concrete. $Q^{\infty}$ and r are proved smaller than those of another project. Before application in the site, properties of the fresh concrete and actual mixing time by its ampere load are checked in the batch plant. Based on the results of this study, the optimum mix proportions of the massive concrete are applied successfully to the bottom slab and side wall in LNG in-ground tank.