• 제목/요약/키워드: Heat & Cooling Energy

검색결과 1,277건 처리시간 0.034초

반응표면법을 이용한 Cooling Air Cooler 열교환기의 최적 설계 (Optimum Design of a Cooling Air Cooler Heat Exchanger by Using a Response Surface Method)

  • 김성수;정효민;정한식
    • 동력기계공학회지
    • /
    • 제21권3호
    • /
    • pp.85-92
    • /
    • 2017
  • Global air traffic is forecast to grow at an average annual rate of around 5% in the next 20 years. The continuous growth of air traffic and raised environmental awareness put increasing pressure on aero engine manufacturers to reduce fuel burn and emissions. NEWAC are a new integrated program of the European Union with focus on innovative core engine concepts to achieve this problem. In this paper, Within NEWAC, active core engine configurations will be investigated. the investigation is focused on the optimal design of the CAC heat exchanger for active core. For optimal design of he CAC heat exchanger, the HTFS of basic design of heat exchanger are analyzed so as to proceed an optimization routines based on Response Surface Method(RSM) and Design of Experiment(DOE). As a result, CAC heat exchanger optimized by 1.0314 lb/s mass flow rate and 3.9058 mm TP of tube layout and 206.8181 mm height of heat exchanger and 918 tube number for heat transfer and pressure drop. We confirm the design optimization using RSM and DOE is useful on complex structure of heat exchanger.

더운환경에서의 냉각조끼의 착용효과에 관한 연구 (Effectiveness of Cooling Vest in Hot Environment)

  • 최정화;황경숙
    • 한국의류학회지
    • /
    • 제25권1호
    • /
    • pp.83-90
    • /
    • 2001
  • Cooling garments are being considered for reducing heat strain in hot environment. We evaluated the effectiveness of ice gel-based cooling vest in hot environment both resting and exercising. Four male subjects were exposed to heat(4$0^{\circ}C$, 50%RH) with vest or without it. The results were as follows; In case of the trial wearing ice gel-based cooling vest, total body weight loss, and local sweat volume were less than those without it. Mean skin temperature, rectal temperature, pulse, energy expenditure, temperature of inside clothes, and humidity of inside also were lower than those without cooling vest. By subjective thermal sensation, subjective humidity sensation, and thermal comfort sensation, it was proved that non-wearing vest decreased comfort than wearing that. These results suggested that wearing ice gel-based cooling vest reduced human heat strain in hot environment both resting and exercising.

  • PDF

주택에서의 단열성능 강화가 냉난방부하에 미치는 영향 (The Strengthening Effect of the Heating and Cooling Load on the Thermal Performance in the Housing Unit)

  • 이준기;김성훈;이갑택;이경희
    • 설비공학논문집
    • /
    • 제28권12호
    • /
    • pp.483-488
    • /
    • 2016
  • In this study, we chose the rural house as a standard model. In order to review the energy difference of cooling and heating loads, we changed the thermal transmittance standards. By using the thermal transmittance standard in 2011 as the Basic CASE, the thermal transmittance standard in 2013 as well as 2016, and the thermal transmittance standard of passive houses, we compared the results with regard to the cooling and heating energy load. Because of the heat loss, it can be confirmed that with an improved thermal performance of the building structure, the maximum increase of the cooling energy load was 36 kWh from June to September. Because of the heat loss, it was also confirmed that with the improved thermal performance of a building structure, the maximum decrease of the heating energy load is 1,498 kWh from November to April. Even though the heat loss of the building structure could decrease the cooling energy load by improving thermal transmittance standards in Korea, the energy saving performance is worse than the situation of heating energy load in heating period. Compared with CASE 1 and CASE 2, as well as CASE 1 and CASE 3, we CASE 3 was found to have the best energy saving rate when compared to the other cases : CASE 3 increased by 1,452 kWh and CASE 2 by 588 kWh, because the window thermal transmittance standard of 2016 was added.

지열 Hybrid System 개발을 통한 대형 공동구조물 지열에너지 적용성 평가 (Application of the Geothermal Hybrid System for Huge Size Common Structures with Heating & Cooling System)

  • 박시삼;나상민;박종헌;이건중;김태원;김승엽
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.588-591
    • /
    • 2009
  • Ground source heat pump system; GSHPs is close to most practical use for early stage investment cost and energy efficiency in new renewable energies, and currently considered utilizing to the heat and cooling system of a building. Particularly, the case to utilize 'Standing Column well heat source gathering method' in the open standards process to have the excellent capability of gathering geothermal source is increased. But the research for the optimal design technology and the assessment of a pollution level of the ground to utilize a single well for gathering geothermal is insignificant and the design is insufficient. The heating and cooling system and the equipment to utilize a large size residential development to have over 1000 households have not developed yet. Therefore, our company developed 'geothermal hybrid system' which can construct the heat and cooling system using geothermal energy for a large size residential development of over 1000 households and conducted the evaluation of economic feasibility. Moreover we developed automatic equipment for gathering geothermal source and PLC (Programmable logic controller) to have optimal efficiency and FCU (fan coil unit) considering the floors of large size apartments.

  • PDF

사무시설에 수직형 지열원 냉 난방시스템의 경제성을 고려한 인입온도(EWT)에 관한 연구 (A Study on Entering Water Temperature in Vertical Closed Ground Loop System Considering the Economical Feasibility in Load of the Office Building)

  • 이병두;이대우;이세진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.579-585
    • /
    • 2009
  • Recently, Vertical-Closed Loop system using geothermal which is the most efficient among the building cooling and heating systems is coming into wide spread due to assistance of domestic policies. However, there is a limitation that a design of ground heat exchanger taking 60% of construction cost is done by GLD and GLHEPRO programs without specific guidelines and consideration on Entering Water Temperature(EWT). For getting an optimal EWT, we analyzed the costs for construction of ground heat exchanger and cooling and heating for 15 years. In the results, reduction of construction costs as the length of ground heat exchanger shortens was much greater than increase of the electrical power consumption as COP gets low. EWT that COP of heat pump can be 3.76 or above was below $31^{\circ}C$ in cooling and was over $5^{\circ}C$ in heating.

  • PDF

사무소 건물의 외피요소가 냉난방 및 조명에너지 소비에 미치는 영향에 관한 연구 (A Study on the Effect of Envelope Factors on Cooling, Heating and Lighting Energy Consumption in Office Building)

  • 손장희;양인호
    • 조명전기설비학회논문지
    • /
    • 제26권2호
    • /
    • pp.8-17
    • /
    • 2012
  • The objective of this study is to perform an analysis of the heat(heating and cooling) and lighting energy consumption according to the window area ratio and the application of horizontal louver, which is external shading device installed for the purpose of energy savings in office buildings. For this, a building was chosen as a typical example, and the heat and lighting energy consumption was calculated by using the daylight and building energy analysis simulation. The results showed that the total energy consumption, when the lighting control was applied, was reduced by an average of 11.49[%] compared to when there was no lighting control. The smaller the glazing ratio is, the less the total energy consumption is. Also, the application of the horizontal louver increases the total energy consumption under the same condition of glazing ratio.

소규모 학교의 냉난방 및 신재생에너지복합시스템 적용방안에 관한 연구 (A Study on the Application Plan of Air-Conditioning and Renewable Complex Systems in the Small Schools.)

  • 김지연;박효순;홍성희;김성실;허인구;서승직
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.946-951
    • /
    • 2009
  • The research aims to study a new, optimum and renewable energy application method that can cover the minimum energy and operation costs within a range of school budgets. By deriving the optimum application method, it is expected to maximize the cooling/heating and water heating energy saving efficiencies for educational facilities. Therefore, this research carried out a study on the new/renewable energy utilization technique diffusion expansion method and the optimum method. As a result, the first optimum plan was introduced with the multi-type geothermal heat pump 174kW + solar heat collector $94\;m^2$ + highly efficient electronic cooling/heating device (EHP) 249.4kW. On the other hand, the second optimum plan was induced as the multi-type geothermal heat pump 255.2kW + highly efficient electronic cooling/heating device (EHP) 168.2kW.

  • PDF

EVALUATION OF HEAT-FLUX DISTRIBUTION AT THE INNER AND OUTER REACTOR VESSEL WALLS UNDER THE IN-VESSEL RETENTION THROUGH EXTERNAL REACTOR VESSEL COOLING CONDITION

  • JUNG, JAEHOON;AN, SANG MO;HA, KWANG SOON;KIM, HWAN YEOL
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.66-73
    • /
    • 2015
  • Background: A numerical simulation was carried out to investigate the difference between internal and external heat-flux distributions at the reactor vessel wall under in-vessel retention through external reactor vessel cooling (IVR-ERVC). Methods: Total loss of feed water, station blackout, and large break loss of coolant accidents were selected as the severe accident scenarios, and a transient analysis using the element-birth-and-death technique was conducted to reflect the vessel erosion (vessel wall thickness change) effect. Results: It was found that the maximum heat flux at the focusing region was decreased at least 10% when considering the two-dimensional heat conduction at the reactor vessel wall. Conclusion: The results show that a higher thermal margin for the IVR-ERVC strategy can be achieved in the focusing region. In addition, sensitivity studies revealed that the heat flux and reactor vessel thickness are dominantly affected by the molten corium pool formation according to the accident scenario.

열전소자 및 열전냉각장치의 성능에 관한 연구 (A Study on the Performance of Thermoelectric Module and Thermoelectric Cooling System)

  • 유성연;홍정표;심우섭
    • 설비공학논문집
    • /
    • 제16권1호
    • /
    • pp.62-69
    • /
    • 2004
  • Thermoelectric module is a device that can produce cooling in a direct manner using the electrical energy. The purpose of this study is to investigate the performance of thermoelectric module and cooling system equipped with the thermoelectric module. The performance of a thermoelectric module is estimated using two methods; theoretical analysis based on one-dimensional energy equations and experimental tests using heat source, heat sink and brass conduction extenders. For the thermoelectric cooling system, the temperatures in the chamber are recorded and then compared with those of lumped system analysis. The results show that the cooling capacity and COP of the thermoelectric module increases as the temperature difference between hot and cold surface decreases, and there is particular current at which cooling capacity reaches its maximum value. The experimental results for the thermoelectric cooling system are similar to those of lumped system analysis.

전항력을 이용한 회전 블레이드 냉각성능 향상 방안 연구 (Advanced Internal Cooling Passage of Turbine Blade using Coriolis Force)

  • 박준수
    • 융복합기술연구소 논문집
    • /
    • 제6권1호
    • /
    • pp.37-41
    • /
    • 2016
  • The serpentine internal passage is located in turbine blade and it shows the variety heat transfer distribution. Especially, the Coriolis force, which is induced by blade rotation, makes different heat transfer distribution of the leading and trailing surfaces of serpentine internal passage. The different heat transfer is one of the reasons why the serpentine cooling passage shows low cooling performance in the rotating condition. So, this study tried to design the advanced the serpentine passage to consideration of the Coriolis force. The design concept of advanced serpentine cooling is maximizing cooling performance using the Coriolis force. So, the flow turns from leading surface to trailing surface in advanced serpentine passage to match the direction of Coriolis force and rotating force. We performed numerical analysis using CFX and compared the existing and advanced serpentine internal passage. This design change is induced the high heat transfer distribution of whole advanced serpentine internal passage surfaces.