• Title/Summary/Keyword: Heat

Search Result 36,348, Processing Time 0.071 seconds

Noncondensable gas's influence in waster vapor absorption accompanying interfacial disturbance into aqueous solution of LiBr

  • Dong-Ho RIE;Keun-Oh Lee
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.2
    • /
    • pp.63-70
    • /
    • 1992
  • The aim of this research is to obtain a basic quantitative understanding of the effect of a noncondensable gas on the absorption of water vapor by a $H_2O$ / LiBr combination with n-octanol as the surfactant. Nonflowing aqueous solutions of LiBr (40,45,50 mass%) were exposed to saturated water vapor following the addition of an n-octanol sufactant (0.01 and 0.6 mass%). A small amount of a noncondensable gas (air) was allowed into the absorber (0.03 volume%) and its effect was analyzed by measuring the amount of water vapor absorbed. This study will aid to predict the performance of heat pump and safety operating condition when the noncondensable gas is not allowed in the absorber The results indicate that, in the presence of small amounts of a noncondensable gas, vapor absorption enhancement ratios are less than half o( those obtained under the same experimental conditions when a noncondensable gas is not present (1). The presence of a noncondensable gas causes the partial vapor pressure of air to increase at the vapor / liquid interface, which results in an instability of vapor absorption rate nd. hence, in an inhibition of interfacial disturbance.

  • PDF

Operating Characteristics of 1 $Nm^3/h$ Scale Synthetic Natural Gas(SNG) Synthetic Systems (1 $Nm^3/h$ 규모 합성천연가스(SNG) 합성 시스템의 운전 특성)

  • Kim, Jin-Ho;Kang, Suk-Hwan;Ryu, Jae-Hong;Lee, Sun-Ki;Kim, Su-Hyun;Kim, Mun-Hyun;Lee, Do-Yeon;Yoo, Yong-Don;Byun, Chang-Dae;Lim, Hyo-Jun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.491-497
    • /
    • 2011
  • In this work, we proposed the three different reactor systems for evaluating of synthetic natural gas(SNG) processes using the synthesis gas consisting of CO and $H_2$ and reactor systems to be considered are series adiabatic reaction system, series adiabatic reaction system with the recirculation and cooling wall type reaction system. The maximum temperature of the first adiabatic reactor in series adiabatic reaction system raised to 800. From the these results, carbon dioxide in product gas as compared to other systems was increased more than that expected due to water gas shift reaction(WGSR) and the maximum $CH_4$ concentration in SNG was 90.1%. In series adiabatic reaction system with the recirculation as a way to decrease the temperature in catalyst bed, the maximum $CH_4$ concentration in SNG was 96.3%. In cooling wall type reaction system, the reaction heat is absorbed by boiling water in the shell and the reaction temperature is controlled by controlling the amount of flow rate and pressure of feed water. The maximum $CH_4$ concentration in SNG for cooling wall type reaction system was 97.9%. The main advantage of the cooling wall type reaction system over adiabatic systems is that potentially it can be achieve almost complete methanation in one reactor.

Study on Characteristics of Cold-pressed Sesame Oil and Virgin Sesame Oil (냉 압착 참기름과 볶음 압착 참기름의 품질 특성)

  • Kim, Bum-Keun;Lim, Jeong-Ho;Cho, Young-Sim;Park, Kee-Jai;Kim, Jong-Chan;Jeon, Jin-Woong;Jeong, Seong-Weon
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.5
    • /
    • pp.812-821
    • /
    • 2008
  • The characteristics of cold-pressed sesame oil (CPSO), virgin sesame oil (VSO), commercial heat-press extracted sesame oil (CHPESO) and commercial supercritical fluid extracted sesame oil (CSFESO) were investigated. The total phenolics of CPSO, VSO, CHPESO and CSFESO were 31.27, 68.33, 60.65 and 31.44 mg/100 g, respectively. Their $\gamma$-tocopherol contents were 32.82, 31.66, 29.26 and 26.87 mg/100g, respectively. The sesamol, sesamin, and sesamolin contents of VSO were the highest. The oxidation induction period (4.53 hr) of CPSO was lower than that of VSO, CHPESO and CSFESO (19.90, 16.50, and 12.23 hr, respectively). CPSO was rapidly oxidized during storage at $60^{\circ}C$ in the dark, and its peroxide value (POV) was increased about 14 times. Although there were few differences in electron-donating abilities at low concentrations (below 100 mg%), VSO showed the highest electron-donating abilities at higher concentrations (77.76% at 10,000 mg%). Contents of linolenic acid and oleic acid were $40.35{\sim}43.98$ and $31.59{\sim}33.46\;g$/100 g, respectively. CPSO contained the highest amount of oleic and linoleic acid among the variously extracted sesame oil.

  • PDF

Time Resolution Improvement of MRI Temperature Monitoring Using Keyhole Method (Keyhole 방법을 이용한 MR 온도감시영상의 시간해상도 향상기법)

  • Han, Yong-Hee;Kim, Tae-Hyung;Chun, Song-I;Kim, Dong-Hyeuk;Lee, Kwang-Sig;Eun, Choong-Ki;Jun, Jae-Ryang;Mun, Chi-Woong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.31-39
    • /
    • 2009
  • Purpose : This study proposes the keyhole method in order to improve the time resolution of the proton resonance frequency(PRF) MR temperature monitoring technique. The values of Root Mean Square (RMS) error of measured temperature value and Signal-to-Noise Ratio(SNR) obtained from the keyhole and full phase encoded temperature images were compared. Materials and Methods : The PRF method combined with GRE sequence was used to get MR temperature images using a clinical 1.5T MR scanner. It was conducted on the tissue-mimic 2% agarose gel phantom and swine's hock tissue. A MR compatible coaxial slot antenna driven by microwave power generator at 2.45GHz was used to heat the object in the magnetic bore for 5 minutes followed by a sequential acquisition of MR raw data during 10 minutes of cooling period. The acquired raw data were transferred to PC after then the keyhole images were reconstructed by taking the central part of K-space data with 128, 64, 32 and 16 phase encoding lines while the remaining peripheral parts were taken from the 1st reference raw data. The RMS errors were compared with the 256 full encoded self-reference temperature image while the SNR values were compared with the zero filling images. Results : As phase encoding number at the center part on the keyhole temperature images decreased to 128, 64, 32 and 16, the RMS errors of the measured temperature increased to 0.538, 0.712, 0.768 and 0.845$^{\circ}C$, meanwhile SNR values were maintained as the phase encoding number of keyhole part is reduced. Conclusion : This study shows that the keyhole technique is successfully applied to temperature monitoring procedure to increases the temporal resolution by standardizing the matrix size, thus maintained the SNR values. In future, it is expected to implement the MR real time thermal imaging using keyhole method which is able to reduce the scan time with minimal thermal variations.

  • PDF

Processing and Quality Properties of Olive Flounder Paralichthys olivaceus Cutlet (넙치(Paralichthys olivaceus) 커틀렛 제품의 제조 및 품질특성)

  • YOON, Moon-Joo;LEE, Jae-Dong;KWON, Soon-Jae;PARK, Si-Young;KONG, Cheong-Sik;JOO, Jong-Chan;KIM, Jeong-Gyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.3
    • /
    • pp.625-633
    • /
    • 2015
  • Olive flounder (Parlichthys olivaceus) is a large carnivorous fish that live at coastal area and shallow seas in Korea. It was good texture and clean taste because of a high collagen content and low lipid content. More than 70% of olive flounder annual production was traded alive, consequently processing food product from olive flounder is rare to be towed. This study was conducted to investigate the best method of olive flounder cutlet processing. Clean fillet (headless, skinless and contain no viscera part) of olive flounder were divided into 5 portion. Every 100 g of olive flounder meat was wrapped with vinyl then flatten with meat hammer. Flatten fillet then was coated with wheat flour, and seasoned with salt and pepper. These were then coated with egg wash and bread crumbs. Two different method of processing was to make this olive flounder cutlet. Cutlet-1 was fried for 1 min in olive oil, then kept in polyethylene film vacuum packaging ($20{\times}30{\times}0.05mm$) and stored at $-20^{\circ}C$ for 7 days. After 7 days the cutlet was thawed and heat up in microwave for 2 min (Sample-1). The other proup is cutlet-2, which is directly stored in polyethylene film vacuum packaging at $-20^{\circ}C$ for 7 days then thawed and fried for 1 min in olive oil (Sample-2). The factors such as pH, TBA value, amino-N, free amino acid, chemical composition, color value (L, a, b), texture profile, sensory evaluation and viable bacterial count of the olive flounder cutlet (Sample-1, Sample-2) were measured. From the result of sensory evaluation, Sample-2 showed a little high scores than Sample-1. But there was no significant differences in color, odor, taste, texture and overall acceptance between Sample-1 and Sample-2 products.

Effect of ${\alpha}-Amylase$ Treatment of Brown Rice(Goami) Alcohol Fermentation By-Product (현미(고아미) 알코올발효 부산물의 ${\alpha}-amylase$처리 효과)

  • Woo, Seung-Mi;Kim, Tae-Young;Yeo, Soo-Hwan;Kim, Sang-Burm;Kim, Mi-Hyun;Woo, Sang-Chel;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.14 no.6
    • /
    • pp.617-623
    • /
    • 2007
  • To utilize the non-heat treated alcoholic by-products of brown rice(Goami) as food sources, the quality characteristics change according to the treatment conditions of ${\alpha}-amylase$ were evaluated. It resulted that the increase of hydrolysis temperature correspondingly increased the soluble solids, total dietary fiber and total sugar in the by-products of Goami, and the highest reducing sugar content was observed at $80^{\circ}C$. The free amino acids contents were tended to slowly decrease by the hydrolysis temperature more than $70^{\circ}C$, and the highest content of oligosaccharides were detected at the hydrolysis temperature of $80^{\circ}C$. The soluble solid according to the ${\alpha}-amylase$ concentration resulted to increase with the increase of the enzyme concentration and the total dietary fiber revealed similarly showing approximately 0.65%. The high content of reducing sugars was observed at the enzyme concentration around 0.08%(v/w). Total sugars and oligosaccharides contents tend to increase as the concentration of enzyme increased, and the content of oligosaccharides acquired at the enzyme concentration more than 0.10%(v/w) maintained to show rather similar contents. The soluble solids and total dietary fiber by hydrolysis time were found to show 6.66% and 0.65%, respectively at more than 60 min of hydrolysis, and the reducing sugars and total sugars were found to be 3,600 and 4,800 mg% in all treatment groups showing no significant difference. The content of oligosaccharides was increased with the increase of hydrolysis time, and the content was similar at more than 90 min of hydrolysis by ranging around 2,100 mg%. Based upon these results, the by-products of Goami are expected to be used as various food sources showing the highest dietary fiber and oligosaccharides contents by the hydrolysis at $80^{\circ}C$ for 90 min with the addition of 0.10%(v/w) of ${\alpha}-amylase$.

Current Status of the Research on the Postharvest Technology of Melon(Cucumis melo L.) (멜론(Cucumis melo L.) 수확 후 관리기술 최근 연구 동향)

  • Oh, Su-Hwan;Bae, Ro-Na;Lee, Seung-Koo
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.442-458
    • /
    • 2011
  • Among Cucubitaceae, melon (Cucumis melo) is one of the most diversified fruits, with various forms, sizes, pulps, and peel colors, In addition, it is a commercially important crop because of its high sweetness, deep flavor, and abundant juice. In the species, there are both climacteric and non-climacteric melons depending on the respiration and ethylene production patterns after harvest. Ethylene is also considered a crucial hormone for determining sex expression, Phytohormones other than ethylene interact and regulate ripening, There are some indices that can be used to evaluate the optimum harvest maturity. The harvest time can be estimated after the pollination time, which is the most commonly used method of determining the harvest maturity of the fruit. Besides the physiological aspects, the biochemical alterations, including those of sweetness, firmness, flavor, color, and rind, contribute to the overall fruit quality. These changes can be categorized based on the ethylene-dependent and ethylene-independent phenomena due to the ethylene-suppressed transgenic melon. After harvest, the fruits are precooled to $10^{\circ}C$ to reduce the field heat, after which they are sized and packed. The fruits can be treated with hot water ($60^{\circ}C$ for 60 min) to prevent the softening of the enzyme activity and microorganisms, and with calcium to maintain their firmness. 1-methylenecyclopropene (1-MCP) treatment also maintains their storability by inhibiting respiration and ethylene production. The shelf life of melon is very short even under cold storage, like other cucurbits, and it is prone to obtaining chilling injury under $10^{\circ}C$. In South Korea, low-temperature ($10^{\circ}C$) storage is known to be the best storage condition for the fruit. For long-time transport, CA storage is a good method of maintaining the quality of the fruit by reducing the respiration and ethylene. For fresh-cut processing, washing with a sanitizing agent and packing with plastic-film processing are needed, and low-temperature storage is necessary. The consumer need and demand for fresh-cut melon are growing, but preserving the quality of fresh-cut melon is more challenging than preserving the quality of the whole fruit.

Reliability Assessment of Flexible InGaP/GaAs Double-Junction Solar Module Using Experimental and Numerical Analysis (유연 InGaP/GaAs 2중 접합 태양전지 모듈의 신뢰성 확보를 위한 실험 및 수치 해석 연구)

  • Kim, Youngil;Le, Xuan Luc;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.75-82
    • /
    • 2019
  • Flexible solar cells have attracted enormous attention in recent years due to their wide applications such as portable batteries, wearable devices, robotics, drones, and airplanes. In particular, the demands of the flexible silicon and compound semiconductor solar cells with high efficiency and high reliability keep increasing. In this study, we fabricated a flexible InGaP/GaAs double-junction solar module. Then, the effects of the wind speed and ambient temperature on the operating temperature of the solar cell were analyzed with the numerical simulation. The temperature distributions of the solar modules were analyzed for three different wind speeds of 0 m/s, 2.5 m/s, and 5 m/s, and two different ambient temperature conditions of 25℃ and 33℃. The flexibility of the flexible solar module was also evaluated with the bending tests and numerical bending simulation. When the wind speed was 0 m/s at 25 ℃, the maximum temperature of the solar cell was reached to be 149.7℃. When the wind speed was increased to 2.5 m/s, the temperature of the solar cell was reduced to 66.2℃. In case of the wind speed of 5 m/s, the temperature of the solar cell dropped sharply to 48.3℃. Ambient temperature also influenced the operating temperature of the solar cell. When the ambient temperature increased to 33℃ at 2.5 m/s, the temperature of the solar cell slightly increased to 74.2℃ indicating that the most important parameter affecting the temperature of the solar cell was heat dissipation due to wind speed. Since the maximum temperatures of the solar cell are lower than the glass transition temperatures of the materials used, the chances of thermal deformation and degradation of the module will be very low. The flexible solar module can be bent to a bending radius of 7 mm showing relatively good bending capability. Neutral plane analysis was also indicated that the flexibility of the solar module can be further improved by locating the solar cell in the neutral plane.

Analysis of the Level of Cognitive Demands about Concepts of the Changes of State and Kinetic Theory on 'Science 1' Textbooks in Junior High School (III) ('과학1' 중학교 교과서의 물질의 상태 변화와 분자 운동 내용이 요구하는 인지 수준 분석(제III보))

  • Park, Jieun;Park, Yesul;Kang, Soonhee
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.5
    • /
    • pp.640-655
    • /
    • 2013
  • The purpose of this study is to analyze the cognitive demands level of the description about 'changes of state' and 'kinetic theory' on the 'science 1' textbooks by the 2007 revised curriculum. The three types of curriculum analysis taxonomy have been used to analyze the cognitive demands level of those contents on the 6 kinds of 'science 1' textbooks. The most higher level of cognitive demands about the concepts have been discussed here due to the focus of the concepts. The first, the cognitive demand level about 'three states of substances' depending on the motion of their particles in 6 textbooks is a early formal operational stage because of using by the application of kinetic theory. The second, the cognitive demand level about 'diffusion' and 'evaporation' is a early formal operational stage, because the particles move around faster so they can change their position. The third, the cognitive level of the pressure and volume in a gas is a early formal operational stage because of explaining only phenomena in simple correspondence with formal model of kinetic theory. And simple functional relationships beyond linear on the graph of the volume and pressure of gas, the volume and temperature of gas is also a early formal operational stage. The fourth, the cognitive level of the energy of heat by a change of the state is also a early formal operational stage because kinetic theory picture accepted as providing explanation by the change of the state. And functional relationships beyond linear on the graph of the explanation of boiling point of water in water is also a early formal operational stage.

Control of Water-Adsorption Properties of Mesoporous Silica and MOF by Ion Exchange and Salt Impregnation (양이온 교환 및 염 함침을 통한 메조다공성 실리카와 유기-금속 구조체의 수분 흡착 특성 조절)

  • Lee, Eun Kyung;Cho, Kanghee;Kim, Sang Kyum;Lim, Jong Sung;Kim, Jong-Nam
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.55-62
    • /
    • 2018
  • The adsorbent used in water-adsorption cooling system utilizing low-temperature heat of below $90^{\circ}C$ is required to exhibit high water uptake capacity at a relative humidity ($P/P_0$) between 0.1 and 0.3. Mesoporous silica (MCM-41) and MOF(MIL-101) exhibit quite large water adsorption capacity under saturated water vapor at $35^{\circ}C$. However, these adsorbents show small water adsorption capacity ($0.027{g_{water}\;g_{ads}}^{-1}$, $0.074{g_{water}\;g_{ads}}^{-1}$, respectively) in the relative humidity ($P/P_0$) range of 0.1 to 0.3. In this study, the surface properties of mesoporous silica and MOF were modified by simple methods to develop an adsorbent having a higher water uptake than the conventional water adsorbents at a relative humidity ($P/P_0$) of 0.1 ~ 0.3. In the case of mesoporous silica (MCM-41) exhibiting mainly water adsorption at $P/P_0=0.5{\sim}0.7$, aluminum species was functionalized on the mesopore walls and then cations existing near the aluminum were exchanged with various cations (e.g., $Na^+$, ${NH_4}^+$, and $(C_2H_5)_4N^+$). In addition, 20 wt% (to total weight of the composites) of hygroscopic inorganic salt ($CaCl_2$) was impregnated on the MCM-41. In the case of the MIL-101 (MOF), 20 wt% of hygroscopic inorganic salt ($CaCl_2$) was impregnated on the MIL-101. The MCM-41 which was ion-exchanged with various cations has main adsorption branch around 0.5 of $P/P_0$ which was slightly shifted with low-pressure direction in comparison with pristine MCM-41. However, tiny increases were observed on the adsorption in the range of $P/P_0$ between 0.1 and 0.3. After salt impregnation on the MCM-41, the adsorption capacity under $P/P_0=0.1{\sim}0.3$ at $35^{\circ}C$ was increased from $0.027{g_{water}\;g_{ads}}^{-1}$ to $0.152{g_{water}\;g_{ads}}^{-1}$. In the case of MIL-101, the amount of water adsorption at $35^{\circ}C$ under $P/P_0=0.1{\sim}0.3$ was increased from $0.074{g_{water}\;g_{ads}}^{-1}$ to $0.330{g_{water}\;g_{ads}}^{-1}$ after the salt impregnation.