• 제목/요약/키워드: Heart sound classification

검색결과 15건 처리시간 0.023초

Class Determination Based on Kullback-Leibler Distance in Heart Sound Classification

  • Chung, Yong-Joo;Kwak, Sung-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • 제27권2E호
    • /
    • pp.57-63
    • /
    • 2008
  • Stethoscopic auscultation is still one of the primary tools for the diagnosis of heart diseases due to its easy accessibility and relatively low cost. It is, however, a difficult skill to acquire. Many research efforts have been done on the automatic classification of heart sound signals to support clinicians in heart sound diagnosis. Recently, hidden Markov models (HMMs) have been used quite successfully in the automatic classification of the heart sound signal. However, in the classification using HMMs, there are so many heart sound signal types that it is not reasonable to assign a new class to each of them. In this paper, rather than constructing an HMM for each signal type, we propose to build an HMM for a set of acoustically-similar signal types. To define the classes, we use the KL (Kullback-Leibler) distance between different signal types to determine if they should belong to the same class. From the classification experiments on the heart sound data consisting of 25 different types of signals, the proposed method proved to be quite efficient in determining the optimal set of classes. Also we found that the class determination approach produced better results than the heuristic class assignment method.

통계적 모델링 기법을 이용한 연속심음신호의 자동분류에 관한 연구 (Automatic Classification of Continuous Heart Sound Signals Using the Statistical Modeling Approach)

  • 김희근;정용주
    • 한국음향학회지
    • /
    • 제26권4호
    • /
    • pp.144-152
    • /
    • 2007
  • 기존의 심음분류를 위한 연구들은 인공신경망을 이용하여 주로 이루어졌다. 그러나 심음신호의 통계적 특성을 분석 한 결과 HMM의 의한 신호모델링이 적합한 것으로 나타났다. 본 연구에서는 다양한 질병을 나타내는 심음신호를 HMM을 이용하여 모델링 하고 인식성능이 심음신호의 클러스터링에 따라서 많이 좌우되는 것을 알 수 있었다. 또한 실제 환경에서의 심음신호는 그 시작과 끝나는 시점이 정해지지 않은 연속신호이다. 따라서 HMM을 이용한 심음분류를 위해서는 연속적인 심음신호로부터 한 사이클의 분할된 심음을 추출할 필요성이 있다. 일반적으로 수동분할은 분할오류를 발생시키며 실시간 심음인식에 적합하지 않으므로 분할과정이 필요치 않는 ergodic형 HMM을 변형하여 사용할 것을 제안하였다. 그리고 제안된 HMM은 연속심음을 이용한 분류실험에서 매우 높은 성능을 보임을 알 수 있었다.

자동 분할과 ELM을 이용한 심장질환 분류 성능 개선 (Performance Improvement of Cardiac Disorder Classification Based on Automatic Segmentation and Extreme Learning Machine)

  • 곽철;권오욱
    • 한국음향학회지
    • /
    • 제28권1호
    • /
    • pp.32-43
    • /
    • 2009
  • 본 논문은 자동 분할과 extreme learning machine (ELM)을 이용하여 연속 심음신호에 의한 심장질환 분류의 성능을 개선한다. 자동 분할을 위한 전처리 단계에서 비정상적인 심음신호는 심잡음 (murmur)과 클릭음 (click)을 포함하고 있기 때문에 제1음 (S1)과 제2음 (S2) 시작점 검출 결과가 부정확하거나 누락되어 기존의 심장질환 분류 시스템의 정확도를 저하시키게된다. 이러한 분할 오류에 의한 성능 저하를 감소하기 위해 S1 및 S2의 위치를 찾고, S1 및 S2의 시간 차이를 이용하여 부정확한 시작점을 교정한 다음 한 주기 심음 신호를 추출한다. 특징벡터로는 단일 주기의 심음 신호로부터 추출된 멜척도 필터뱅크 로그 에너지 계수와 포락선을 사용한다. 심장질환을 분류하기 위하여 한 개의 은닉층을 가진 ELM 알고리듬을 사용한다. 9가지 심장질환 분류 실험을 수행한 결과, 제안 방법은 81.6%의 분류 정확도를 나타내며, multi-layer perceptron(MLP), support vector machine (SVM), hidden Markov model (HMM) 중에서 가장 높은 분류 정확도를 보여준다.

심음 기반의 심장질환 분류를 위한 새로운 시간영역 특징 (New Temporal Features for Cardiac Disorder Classification by Heart Sound)

  • 곽철;권오욱
    • 한국음향학회지
    • /
    • 제29권2호
    • /
    • pp.133-140
    • /
    • 2010
  • 연속 심음신호로부터 추출한 새로운 시간영역에서의 특징들을 추가하여 심장질환 분류의 성능을 개선한다. 기존에 사용되고 있는 켑스트럼 영역 특징인 멜주파수 켑스트럼 계수 (MFCC)에 심음 포락선, 심잡음 확률벡터, 심잡음 진폭값 변동으로 구성된 새로운 3종류의 시간영역 특징을 추가한다. 심장 질환 분류 및 검출 실험에서, 시간영역 특징의 분류 정확도에 대한 기여도를 평가하고 순차적 특징선택 방식을 이용하여 시간영역 특징을 선택한다. 선택된 특징들은 다층 퍼셉트론(MLP), support rector machine (SVM), extreme learning machine (ELM)와 같은 신경회로망 패턴 분류기에 대하여 의미있고 일관되게 분류 정확도를 개선함을 보여준다.

샤논 엔트로피와 신경회로망을 이용한 심잡음 분류에 관한 연구 (A Study of Classification of Heart Murmurs using Shannon Entropy and Neural Network)

  • 엄상희
    • 융합신호처리학회논문지
    • /
    • 제16권4호
    • /
    • pp.134-138
    • /
    • 2015
  • 본 논문은 심장질환을 비침습적 방법으로 빠르고 쉽게 진단할 수 있도록 심음을 이용하는 방법에 대한 가능성을 찾는 것이다. 일반적으로 심음의 분류를 위하여 심음을 분리한 후에 특징파라미터를 추출하는 과정을 거치지 않고, 심음 분리에 사용되는 Shannon 엔트로피로 정규화하여 신경회로망의 입력으로 사용하였다. 심장질환에 따른 심잡음 분류를 위하여 Scaled conjugate gradient 역전파 알고리즘을 이용하여 신경회로망 분류기를 구현하였다. 정상 심음과 심장 질환의 경우 5가지를 포함하여 6종류의 심잡음에 대하여 분류가 가능함을 확인하였다.

Hidden Markov Model을 이용한 심음분류에 관한 연구 (A Study on Classification of Heart Sounds Using Hidden Markov Models)

  • 김희근;정용주
    • 한국음향학회지
    • /
    • 제25권3호
    • /
    • pp.144-150
    • /
    • 2006
  • 심장병이 있는 환자들을 진료할 때 의사들은 청진기를 이용하여 심음 (heart sound)을 듣고 이를 기준으로 환자의 병의 유무나 질환의 종류에 대한 기초적인 판단을 하게 된다. 하지만, 심음은 환자의 상태나 외부 잡음의 영향에 따라서 신호의 특성이 변하고 또한 정상적인 심음과 질병을 나타내는 심음과의 차이가 비교적 구분하기 어려울 정도로 작기 때문에 숙달된 전문의가 아니면, 진단의 정확도가 떨어질 가능성이 있다. 따라서 신호처리 기법을 이용하여 심음을 분석해서 심음이 정상적인지의 유무를 자동으로 판단할 수 있다면, 진단을 하는 의사들에게 유용한 정보가 될 것이라 생각된다. 본 연구에서는 심음의 질병유무와 질병종류를 자동으로 판단하기 위해서 기존에 많이 사용되었던 artificial neural network (ANN) 대신에 hidden Markov model (HMM)을 사용하는 방법을 제안하였으며, 기초적인 실험결과 상당히 우수한 성능을 보임을 알 수 있었다.

무선 전자청진 심음을 이용한 심장질환 분류 (Cardiac Disorder Classification Using Heart Sounds Acquired by a Wireless Electronic Stethoscope)

  • 곽철;이윤경;권오욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.101-102
    • /
    • 2007
  • Heart diseases are critical and should be detected as soon as possible. A stethoscope is a simple device to find cardiac disorder but requires keen experiences in heart sounds. We evaluate a cardiac disorder classifier by using heart sounds recorded by a digital wireless stethoscope developed in this work. The classifier uses hidden Markov models with circular state transition to model the heart sounds. We train the classifier using two kinds of data: One recorded by using our stethoscope and the other sampled from a clean heart sound database. In classification experiments using 165 sound clips, the classifier shows the classification accuracy of 82% in classifying 6 cardiac disorder categories.

  • PDF

인공판막음의 새로운 스펙트럼 분석 연구 (New Sound Spectral Analysis of Prosthetic Heart Valve)

  • 이희종;김상현;장병철;탁계래;조범구;유선국
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.75-78
    • /
    • 1997
  • In this paper we present new sound spectral analysis methods or prosthetic heart valve sounds. Phonocardiograms(PCG) of prosthetic heart valve were analyzed in order to derive frequency domain feature suitable or the classification of the valve state. The fast orthogonal search method and MUSIC (MUltiple SIgnal Classification) method are described or finding the significant frequencies in PCG. The fast orthogonal search method is effective with short data records and cope with noisy, missing and unequally-spaced data. MUSIC method's key to the performance is the division of the information in the autocorrelation matrix or the data matrix into two vector subspaces, one a signal subspace and the other a noise subspace.

  • PDF

인공판막의 판막음 스펙트럼 분석방법 비교 (Comparison of Spectral Analysis Methods of Prosthetic Heart Valve Sound)

  • 이희종;김상현;장병철;탁계래;조범구;유선국
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.402-405
    • /
    • 1997
  • The analysis of heart sounds is a noninvasive diagnostic method useful to diagnose heart valve function. In this paper we compared the ability of spectral analysis method for prosthetic heart valve sounds. Phonocardiograms of prosthetic heart valve were analyzed in order to derive frequency domain feature suitable for the classification of the valve state. The FFT-based methods did not provide sufficient frequency resolution to completely characterize the spectrum of prosthetic heart valve sounds. A high resolution parametric methods were shown to give superior frequency resolution. In parametric methods, all methods provide a 1st & 2nd & 3rd frequency component. But Shank method provided a most dominant frequency peak.

  • PDF

SVM을 이용하여 HMM과 심잡음 점수를 결합한 심음 기반 심장질환 분류기 (Heart Sound-Based Cardiac Disorder Classifiers Using an SVM to Combine HMM and Murmur Scores)

  • 곽철;권오욱
    • 한국음향학회지
    • /
    • 제30권3호
    • /
    • pp.149-157
    • /
    • 2011
  • 본 논문은 support vector machine (SVM)을 사용하여 은닉 마코프 모델 (HMM)과 심잡음 존재 정보를 결합한 새로운 심장질환 분류 방법을 제안한다. 켑스트럼 특징과 HMM 비터비 (Viterbi) 알고리듬을 이용하여 입력 신호를 모든 심장질환 모델에 대하여 상태 단위로 분할하여 상태별로 로그우도 (점수)를 계산한다. 심잡음 신호의 시간적 위치 특성을 이용하기 위하여 입력신호를 두 개의 부대역으로 나누고 부대역별로 프레임 단위의 심잡음 점수를 계산한 다음, 비터비 알고리듬으로부터 구한 상태 분할 정보를 이용하여 상태단위의 심잡음 점수를 구한다. SVM은 모든 심장질환 종류에 대한 상태 단위의 HMM과 심잡음 점수를 입력으로 하여 최종적으로 심장질환을 판정한다. 심장질환 분류 실험결과, 제안한 방법은 기존의 켑스트럼 특징과 HMM 분류기를 이용한 방법에 비하여 20.4 %의 상대적 개선율을 보여준다.