• Title/Summary/Keyword: Heart rate sensing

Search Result 26, Processing Time 0.025 seconds

Research on Heart Rate Sensing Clothing Design for Seniors Based on Universal Fashion (유니버설 패션에 기반한 시니어 심박측정 의류 디자인 연구)

  • Koo, Hye Ran;Jeon, Dong Jin;Lee, Joo Hyeon
    • Fashion & Textile Research Journal
    • /
    • v.19 no.6
    • /
    • pp.692-700
    • /
    • 2017
  • The number of elderly citizens has risen in Korea and resulted in an aging society. Correspondingly, the social interest in the aging population has escalated immensely; however, research or product development on the quality of life for seniors has shortcomings. Healthcare smart clothing is required to help the elderly with changes and weaknesses that follow aging; however, there is unfortunately insufficient amounts available. This study explores the feasibilities of smart clothing for seniors based on a universal design. Based on previous research, we analyzed the universal design theory, body shape characteristics and design requirements for seniors, and heart rate measurement method. The design is different according to body shape and body shape is different between sex, age, and body race; therefore, subjects were limited to 70-74 year old Korean males in this study. This study proposes a guideline for heart rate sensing clothing that satisfies the 'universal design' aspects as well as the functionality of heart sensing, senior's physical characteristics and needs. It has broadened the range of smart clothing, which was once limited to the younger generation and provided a foundation for the development of specialized smart clothing for seniors.

A study on the optimization of the film sensing part for measuring heart rate in wrist (손목에서의 맥박 측정을 위한 필름 센서부 최적화에 관한 연구)

  • Jo, Sung-Hyun;Kim, Sheen-Ja;Lee, Young-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.241-244
    • /
    • 2009
  • We studied the optimization method of sensing part for measuring heart rate in wrist. In order to know optimum structure of sensing part, we measured the heart rate signal by changing the shape and size of sensor pad structure and the thickness of silicon. The shapes of structure using in experiment are Empty, Rectangle, Embossing, Length, Width. We were compared the amplitude of output signal about each shape when thickness of silicon pad is increasing from 0 to 7 mm by 1 mm.

  • PDF

Systematic test on the effectiveness of MEMS nano-sensing technology in monitoring heart rate of Wushu exercise

  • Shuo Guan
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.155-163
    • /
    • 2023
  • Exercise is beneficial to the body in some ways. It is vital for people who have heart problems to perform exercise according to their condition. This paper describes how an Android platform can provide early warnings of fatigue during wushu exercise using Photoplethysmography (PPG) signals. Using the data from a micro-electro-mechanical system (MEMS) gyroscope to detect heart rate, this study contributes an algorithm to determine a user's fatigue during wushu exercise. It sends vibration messages to the user's smartphone device when the heart rate exceeds the limit or is too fast during exercise. The heart rate monitoring system in the app records heart rate data in real-time while exercising. A simple pulse sensor and Android app can be used to monitor heart rate. This plug-in sensor measures heart rate based on photoplethysmography (PPG) signals during exercise. Pulse sensors can be easily inserted into the fingertip of the user. An embedded microcontroller detects the heart rate by connecting a pulse sensor transmitted via Bluetooth to the smartphone. In order to measure the impact of physical activity on heart rate, Wushu System tests are conducted using various factors, such as age, exercise speed, and duration. During testing, the Android app was found to detect heart rate with an accuracy of 95.3% and to warn the user when their heart rate rises to an abnormal level.

Modeling and Simulation of the Cardiovascular System Using Baroreflex Control Model (압반사 제어모델을 이용한 심혈관시스템 모델링 및 시뮬레이션)

  • 최병철;전계록
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2004.05a
    • /
    • pp.109-117
    • /
    • 2004
  • In this paper, we consider the aortic sinus baroreceptor, which is the most representative baroreceptor sensing the variance of pressure in the cardiovascular system, and propose heart activity control model to observe the effect of delay time in heart period and stroke volume under the regulation of baroreflex in the aortic sinus. The proposed heart activity baroreflex regulation model contains electric circuit sub-model. We constituted the time delay sub-model to observe sensitivity of heart activity baroreflex regulation model by using the variable value to represent the control signal transmission time from the output of baroreflex regulation model to efferent nerve through central nervous system. The simulation object of this model is to observe variability of the cardiovascular system by variable value in time delay sub-model. As simulation results, we observe three patterns of the cardiovascular system variability by the time delay, First, if the time delay over 2.5 second, aortic pressure and stroke volume and heart rate is observed nonperiodically and observed. Finally, if time delay under 0.1 second, then heart rate and aortic pressure-heart rate trajectory is maintained in stable state.

  • PDF

Research of Change of Heart Rate Variability by Psychological Types before and after Meditation Program (α Version) (명상프로그램(α version) 시행 전 후의 심리유형별 HRV 변화 연구)

  • Kim, Geun-Woo;Bae, Hyo-Sang;Kim, Ji-Hwan;Kim, Byoung-Soo;Lee, Pil-Won;Park, Seong-Sik
    • Journal of Oriental Neuropsychiatry
    • /
    • v.26 no.2
    • /
    • pp.89-102
    • /
    • 2015
  • Objectives: To examine the medical effectiveness of meditation programs ($\alpha$ version) by psychological types. Methods: MBTI, which was created by Katharine Cook Briggs and Isabel Briggs Myers, was used as the Psychological Type test and to investigate psychological temperament and functions and psychological preferences. Heart rate variability was used to test the effectiveness of meditation by investigating time domains (mean HR, SDNN, PSI) and frequence domain parameters (TP, LF, HF, LF or HF norm, Ln (TP or VLF or LF or HF). Results: 1. The autonomic nervous system became active, and both time domains and frequency domains showed positive responses to meditation in heart rate variability tests, without distinction of Psychological Types. 2. In Psychological Types using sensing over intuition for perception, there were positive responses as well as an increase of the parasympathetic nervous system's activeness to meditation for heart rate variability tests, depending on psychological temperaments and psychological functions. 3. In heart rate variability tests by preferences, there was no difference. Extroversion and Introversion types, Sensing over Intuition Types, Thinking over Feeling Types, Judging over Perception Types had an increase of activeness of the parasympathetic nervous system. Therefore, meditation has a positive physical and psychological relaxing effect. Conclusions: A complex meditation program has a positive effect on overall meditation. Especially in the MBTI test, sensing was superior to intuition when people recognized objects. The Sensing, Thinking and Judging type was more advantageous than Intuition, Feeling and Perception, respectively. In the future, a well-designed control study is needed, to develop a suitable meditation for each personality type.

Application of a Textile-based Inductive Sensor for the Vital Sign Monitoring

  • Gi, Sun Ok;Lee, Young Jae;Koo, Hye Ran;Khang, Seonah;Kim, Kyung-Nam;Kang, Seung-Jin;Lee, Joo Hyeon;Lee, Jeong-Whan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.364-371
    • /
    • 2015
  • In this study, we developed a feasible structure of a textile-based inductive sensor using a machine embroidery method, and applied it to a non-contact type vital sign sensing device based on the principle of magnetic-induced conductivity. The mechanical heart activity signals acquired through the inductive sensor embroidered with conductive textile on fabric were compared with the Lead II ECG signals and with respiration signals, which were simultaneously measured in every case with five subjects. The analysis result showed that the locations of the R-peak in the ECG signal were highly associated with sharp peaks in the signals obtained through the textile-based inductive sensor (r=0.9681). Based on the results, we determined the feasibility of the developed textile-based inductive sensor as a measurement device for the heart rate and respiration characteristics.

BioPebble: Stone-type physiological sensing device Supporting personalized physiological signal analysis (BioPebble: 개인화된 해석을 지원하는 돌 타입 휴대용 생체신호 측정센서)

  • Choi, Ah-Young;Park, Go-Eun;Woo, Woon-Tack
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.13-18
    • /
    • 2008
  • In these days, wearable and mobile physiological sensing devices have been studied according to the increasing interest on the healthy and wellbeing life. However, these sensing devices display just the sensing results, such as heart rate, skin temperature, and its daily records. In this work, we propose the novel type of mobile physiological sensing device which deliver the user comfortable grabbing feeling. In addition, we indicate the personalized physiological signal analysis result which be concluded by the different analysis results according to the person to person. In order to verify this sensing device, we collect the data set from 4 different users during a week and measure the physiological signal such as heart rate, hand temperature, and skin conductance. And we observe the result how the analysis results shows the difference between the users. We expect that this work can be applied in the various health care applications in the near future.

  • PDF

Modeling and Simulation of the Cardiovascular System Using Baroreflex Control Model of the Heart Activity (심활성도 압반사 제어 모델을 이용한 심혈관시스템 모델링 및 시뮬레이션)

  • Choi Byeong Cheol;Jeong Do Un;Shon Jung Man;Yae Su Yung;Kim Ho Jong;Lee Hyun Cheol;Kim Yun Jin;Jung Dong keun;Yi Sang Hun;Jeon Gye Rok
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.565-573
    • /
    • 2004
  • In this paper, we proposed a heart activity control model for simulation of the aortic sinus baroreceptor, which was the most representative baroreceptor sensing the variance of pressure in the cardiovascular system. And then, the heart activity control model composed electric circuit model of the cardiovascular system with baroreflex control and time delay sub-model to observe the effect of time delay in heart period and stroke volume under the regulation of baroreflex in the aortic sinus. The mechanism of time delay in the heart activity baroreflex control model is as follows. A control function is conduct sensing pressure information in the aortic sinus baroreceptor to transmit the efferent nerve through central nervous system. As simulation results of the proposed model, we observed three patterns of the cardiovascular system variability by the time delay. First of all, if the time delay over 2.5 second, aortic pressure and stroke volume and heart rate was observed non-periodically and irregularly. However, if the time delay from 0.1 second to 0.25 second, the regular oscillation was observed. And then, if time delay under 0.1 second, then heart rate and aortic pressure-heart rate trajectory were maintained in stable state.

Modeling and Simulation of the Cardiovascular System Using Baroreflex Control Model (압반사 제어모델을 이용한 심혈관 시스템의 모델링 및 시뮬레이션)

  • Choi, B.C.;Eom, S.H.;Nam, G.K.;Son, K.S.;Lee, Y.W.;Jun, K.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.165-170
    • /
    • 1997
  • In this paper, we consider the aortic sinus baroreceptor, which is the most representative baroreceptors sensing the variance of pressure in the cardiovascular system(CVS), and propose heart activity control model to observe the effect of delay time in heart period and stroke volume under the regulation of baroreflex in arotic sinus. The proposed heart activity baroreflex regulation model contains CVS electric circuit sub-model, baroreflex regulation sub-model and time delay sub-model. In these models, applied electric circuit sub-model is researched by B.C.Choi and the baroreflex regulation sub-model transforms the input, the arotic pressure of CVS electric circuit sub-model, to outputs, heart period and stroke volume by mathematical nonlinear feedback. We constituted the time delay sub-model to observe sensitivity of heart activity baroreflex regulation model by using the variable value to represent the control signal transmission time from the output of baroreflex regulation model to efferent nerve through central nervous system. The simulation object of this model is to observe variability of the CVS by variable value in time delay sub-model. As simulation results, we observe three patterns of CVS variability by the time delay. First, if the time delay is over 2.5 sec, arotic pressure, stroke volume and heart rate is observed nonperiodically and irregularly. Second, if the time delay is from between 0.1 sec and 0.25 sec, the regular oscillation is observed. Finally, if time delay is under 0.1 sec, then heart rate and arotic pressure-heart rate trajectory is maintained in stable state.

  • PDF

Correlation between Visual Sensibility and Vital Signal using Wearable based Electrocardiogram Sensing Clothes (웨어러블 기반의 심전도 측정 의복을 이용한 시각감성과 생체신호간의 상관관계)

  • Chung, Kyung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.496-503
    • /
    • 2009
  • In the life environment changed with not only the material abundance but also the quality, it is the most crucial factor for the strategy of sensibility engineering to investigate vital signal according to the sensibility. In this perspective, it is necessary to design and merchandise the products in cope with each sensibility and needs as well as its functional aspects. In this paper, we proposed the correlation between the visual sensibility and the vital signal using the wearable based electrocardiogram sensing clothes. We measured the electrocardiogram (ECG) signal by wearing the electrocardiogram sensing clothes. The heart rate variability (HRV) is calculated form the acquired ECG signal by wearing the electrocardiogram sensing clothes. And the power spectrum analysis using the Fast Fourier Transform (FFT) is evaluated the correlation between the visual sensibility and the vital signal. we plan to conduct empirical applications to verify the adequacy and the validity of the proposed method.