• Title/Summary/Keyword: Health damage

Search Result 1,943, Processing Time 0.022 seconds

Disaster : Concepts and Responses in Prehistoric Times from the Viewpoint of Analytical Psychology (선사시대 원시인의 재난과 대처양식에 대한 분석심리학적 연구 : 신화와 암각화를 중심으로)

  • Chan-Seung Chung
    • Sim-seong Yeon-gu
    • /
    • v.32 no.2
    • /
    • pp.73-121
    • /
    • 2017
  • Disaster is externally an incident that causes enormous damage to society and humanity. Disaster also internally stimulate a variety of personal and collective complexes in the human mind. The sinking of Sewol Ferry in 2014 was a disaster that took away countless lives. People not only in South Korea but around the world were deeply affected by the incident. While directly taking part in disaster mental health support and meeting with people who were sunk in sorrow and helplessness and feeling the collapse of conceit against modern technological civilization, I realised the need to conduct study and research on the conscious and unconscious response from the viewpoint of analytical psychology. This research investigates the response and management of disaster in prehistoric times mainly through myths and petroglyphs. This study aims to consider the problems and improvements of disaster response in the modern times by finding the distinct cultural characteristics and the universal, fundamental, and archetypal human nature inherent in the concepts of disaster and responses to disaster and discovering their meaning and wisdom. Creation myths around the world show that in the beginning there was a disaster as part of the universal creation. Humanity has understood disaster as a periodic renewal of the world by the oppositeness between destruction and creation and had the idea that violation of taboo to be the cause of disaster since prehistoric times. Disaster could be interpreted as the intention of the Self that renews the fundamental consciousness through the externally appearing destructive action. Various rituals performed by man on earth renovates the human consciousness during a mental crisis situation, such as a disaster, and corresponds with the unconscious to create an opportunity for psychological regeneration that seeks harmony. Modern society has neglected the importance of internal dealing and the suffering human soul and concentrated on the external, technological and administrative actions related with disaster response. We cannot determine the occurrence of a disaster, but we can determine how to deal with the disaster. While developing external disaster response, we need to ponder on the meaning of disaster and conduct internal disaster response that care for human mind. Through this, we will understand the meaning of pain and have renewed mature psyche.

Analysis and Improvement Strategies for Korea's Cyber Security Systems Regulations and Policies

  • Park, Dong-Kyun;Cho, Sung-Je;Soung, Jea-Hyen
    • Korean Security Journal
    • /
    • no.18
    • /
    • pp.169-190
    • /
    • 2009
  • Today, the rapid advance of scientific technologies has brought about fundamental changes to the types and levels of terrorism while the war against the world more than one thousand small and big terrorists and crime organizations has already begun. A method highly likely to be employed by terrorist groups that are using 21st Century state of the art technology is cyber terrorism. In many instances, things that you could only imagine in reality could be made possible in the cyber space. An easy example would be to randomly alter a letter in the blood type of a terrorism subject in the health care data system, which could inflict harm to subjects and impact the overturning of the opponent's system or regime. The CIH Virus Crisis which occurred on April 26, 1999 had significant implications in various aspects. A virus program made of just a few lines by Taiwanese college students without any specific objective ended up spreading widely throughout the Internet, causing damage to 30,000 PCs in Korea and over 2 billion won in monetary damages in repairs and data recovery. Despite of such risks of cyber terrorism, a great number of Korean sites are employing loose security measures. In fact, there are many cases where a company with millions of subscribers has very slackened security systems. A nationwide preparation for cyber terrorism is called for. In this context, this research will analyze the current status of Korea's cyber security systems and its laws from a policy perspective, and move on to propose improvement strategies. This research suggests the following solutions. First, the National Cyber Security Management Act should be passed to have its effectiveness as the national cyber security management regulation. With the Act's establishment, a more efficient and proactive response to cyber security management will be made possible within a nationwide cyber security framework, and define its relationship with other related laws. The newly passed National Cyber Security Management Act will eliminate inefficiencies that are caused by functional redundancies dispersed across individual sectors in current legislation. Second, to ensure efficient nationwide cyber security management, national cyber security standards and models should be proposed; while at the same time a national cyber security management organizational structure should be established to implement national cyber security policies at each government-agencies and social-components. The National Cyber Security Center must serve as the comprehensive collection, analysis and processing point for national cyber crisis related information, oversee each government agency, and build collaborative relations with the private sector. Also, national and comprehensive response system in which both the private and public sectors participate should be set up, for advance detection and prevention of cyber crisis risks and for a consolidated and timely response using national resources in times of crisis.

  • PDF

Development of a complex failure prediction system using Hierarchical Attention Network (Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발)

  • Park, Youngchan;An, Sangjun;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.127-148
    • /
    • 2020
  • The data center is a physical environment facility for accommodating computer systems and related components, and is an essential foundation technology for next-generation core industries such as big data, smart factories, wearables, and smart homes. In particular, with the growth of cloud computing, the proportional expansion of the data center infrastructure is inevitable. Monitoring the health of these data center facilities is a way to maintain and manage the system and prevent failure. If a failure occurs in some elements of the facility, it may affect not only the relevant equipment but also other connected equipment, and may cause enormous damage. In particular, IT facilities are irregular due to interdependence and it is difficult to know the cause. In the previous study predicting failure in data center, failure was predicted by looking at a single server as a single state without assuming that the devices were mixed. Therefore, in this study, data center failures were classified into failures occurring inside the server (Outage A) and failures occurring outside the server (Outage B), and focused on analyzing complex failures occurring within the server. Server external failures include power, cooling, user errors, etc. Since such failures can be prevented in the early stages of data center facility construction, various solutions are being developed. On the other hand, the cause of the failure occurring in the server is difficult to determine, and adequate prevention has not yet been achieved. In particular, this is the reason why server failures do not occur singularly, cause other server failures, or receive something that causes failures from other servers. In other words, while the existing studies assumed that it was a single server that did not affect the servers and analyzed the failure, in this study, the failure occurred on the assumption that it had an effect between servers. In order to define the complex failure situation in the data center, failure history data for each equipment existing in the data center was used. There are four major failures considered in this study: Network Node Down, Server Down, Windows Activation Services Down, and Database Management System Service Down. The failures that occur for each device are sorted in chronological order, and when a failure occurs in a specific equipment, if a failure occurs in a specific equipment within 5 minutes from the time of occurrence, it is defined that the failure occurs simultaneously. After configuring the sequence for the devices that have failed at the same time, 5 devices that frequently occur simultaneously within the configured sequence were selected, and the case where the selected devices failed at the same time was confirmed through visualization. Since the server resource information collected for failure analysis is in units of time series and has flow, we used Long Short-term Memory (LSTM), a deep learning algorithm that can predict the next state through the previous state. In addition, unlike a single server, the Hierarchical Attention Network deep learning model structure was used in consideration of the fact that the level of multiple failures for each server is different. This algorithm is a method of increasing the prediction accuracy by giving weight to the server as the impact on the failure increases. The study began with defining the type of failure and selecting the analysis target. In the first experiment, the same collected data was assumed as a single server state and a multiple server state, and compared and analyzed. The second experiment improved the prediction accuracy in the case of a complex server by optimizing each server threshold. In the first experiment, which assumed each of a single server and multiple servers, in the case of a single server, it was predicted that three of the five servers did not have a failure even though the actual failure occurred. However, assuming multiple servers, all five servers were predicted to have failed. As a result of the experiment, the hypothesis that there is an effect between servers is proven. As a result of this study, it was confirmed that the prediction performance was superior when the multiple servers were assumed than when the single server was assumed. In particular, applying the Hierarchical Attention Network algorithm, assuming that the effects of each server will be different, played a role in improving the analysis effect. In addition, by applying a different threshold for each server, the prediction accuracy could be improved. This study showed that failures that are difficult to determine the cause can be predicted through historical data, and a model that can predict failures occurring in servers in data centers is presented. It is expected that the occurrence of disability can be prevented in advance using the results of this study.