• Title/Summary/Keyword: Headspace

Search Result 319, Processing Time 0.026 seconds

Maillard Reaction Products Formed from D-Glucose-Glycine, System and Their Formation Mechanism (D-Glucose-Glycine 계의 Maillard 반응생성물 및 그 생성기구)

  • KIM Seon-Bong;PARK Yeung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.1
    • /
    • pp.45-51
    • /
    • 1986
  • Equimolar aqueous solutions of D-glucose and glycine were heated at $50^{\circ}C\;and\;95^{\circ}C$ at pH 6.7. The headspace volatiles and the ether extracts from the reaction mixture were analyzed by gas chromatography and gas chromatography-mass spectrometry using a fused silica capillary column. The major components formed were identified as diacetyl, three furfurals, two pyrroles, one furanone, two pyranones and two amides. In order to elucidate the formation mechanisms of the amides formed front amino-carbonyl reaction, two model systems were adopted. N-butylacetamide were formed as major components from diacetyl-butylamine ana glyoxal-butylamine systems, respectively. The results obtained suggest that such ${\alpha}-dicarbonyls$ as 3-deoxy-D-erythro-2,3-hexodiulose and diacetyl generated in the amino-carbonyl reaction react with amino compounds, amides then being formed by cleavage of the C-C bond in the ${\alpha}-dicarbonyls$.

  • PDF

Quantification of Volatile Organic Compounds in Gas Sample Using Headspace Solid-Phase Microextraction (고상 미세 추출법을 이용한 가스시료 중 휘발성유기화합물의 정량 분석)

  • Kim, Jae Hyuck;Kim, Hyunook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.906-917
    • /
    • 2013
  • The purpose of this study is to quantify volatile organic compounds (VOCs) in gas sample using headspace solid-phase microextraction (HS-SPME) coupled to GC analysis. The optimal HS-SPME conditions was CAR/PDMS fiber and 30 min absorprion time for the analysis of various VOCs. In optimal conditions, 80 VOCs could be detected within 1 ppbv and even less than 0.0005 ppbv especially in the case of BTEX. However, fiber reproducibility on adsorption efficiency was 1~9.2% (between the same fiber) and 5.9~13.5% (between the other fiber). We successfully determined 35 VOCs in landfill gas with this method and found that VOCs of high concentration are emitting from vent pipe of closed/open landfill site under the HS-SPME conditions. This method may apply to VOCs/odor determination from various atmospheric environmental samples as well as landfills.

Slow release of microencapsulated model compounds of insect pheromone using low molecular weight polyethylene and urea-formaldehyde resin (저분자량 polyethylene과 urea-formaldehyde 수지를 이용한 microencapsulation에 의한 곤충 페로몬의 model 화합물들의 slow release)

  • Kim, Jung-Han;Oh, Won-Taek;Kim, Yong-Jin
    • Applied Biological Chemistry
    • /
    • v.34 no.2
    • /
    • pp.110-116
    • /
    • 1991
  • As the model compounds, citral and n-octanol which possess similar characteristics and structures of low molecular weight insect pheromones and $({\pm})-5-hydroxy-4-methyl-heptan-3-one$ which shows the aggregation pheromones activity of the rice weevil and the maize weevil were microencapsulated with low molecular weight polyethylene(LMPE) and urea-formaldehyde resin as wall materials. The core materials were microencapsulated as small particles in LMPE and urea-formaldehyde resin polymers and the microencapsulated polymers were white powders. And the polymer made from urea-formaldehyde resin was better than that from LMPE as wall material. The slow releasing effect and the releasing patten of the microencapsulated core materials were examined by solvent extraction method and headspace sampling method. Citral and n-octanol and $({\pm})-5-hydroxy-4-methyl-heptan-3-one$ were release more than 40 days and 15 days, respectively. The releasing pattern of urea-formaldehyde resin microcapsules showed rather smooth decrease than that of LMPE and was maintained at steady level longer.

  • PDF

Isolation of Volatile Allelochemicals from Leaves of Perilla frutescens and Artemisia asiatica (들깨(Perilla frutescens)와 쑥(Artemisia asiatics)잎으로부터 휘발성 타감 작용 성분의 분리)

  • Lim, Sun-Uk;Seo, Young-Ho;Lee, Young-Guen;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.37 no.2
    • /
    • pp.115-123
    • /
    • 1994
  • Allelopathic activity of the volatiles from leaves of Perilla frutescens an Artemisia asiatica was determined on the basis of bioassay, which tested germination and seedling growth of radish, rice, mung bean and lettuce. Seedling growth was more inhibited by phytotoxic volatiles than germination. Volatile components collected by headspace cold trapping-Tenax GC adsorption were analyzed by GC-MS. Fifteen volatile components in P. frutescens and 15 components in A. asiatica were identified. By steam distillation-extraction, 4 flavor components in P. frutescens and 10 components in A. asiatica were identified. The inhibitory activity of the fractions, obtained by steam distillation-extraction, was determined by virtue of bioassay on radish. Volatile allelochemicals of the most active fraction, neutral fraction, isolated from P. frutescens contained 9 components. In A. asiatica, 24 volatile allelochemicals were identified.

  • PDF

Effects of Filtration or Centrifugation on the Oxidative Stabilities of Sesame Oil (여과 및 원심 분리가 참기름의 산화 안정성에 미치는 영향)

  • Choe, Eun-Ok;Moon, Soo-Yeun
    • Applied Biological Chemistry
    • /
    • v.37 no.3
    • /
    • pp.168-174
    • /
    • 1994
  • Effects of filtration and centrifugation on the oxidative stabilities of sesame oils during storage at $70^{\circ}C$ were studied by combination of determining peroxide values and conjugated dienoic acid values of oils and measuring the hexanal formation using headspace gas chromatography. Crude sesame oil from roasted seeds contained more free fatty acids, conjugated dienes, and metals (Fe, Cu, Mg and Zn); on the other hand, higher contents of moisture and ${\gamma}-tocopherol$ were found in the filtered or centrifuged oil. Only filtered oil contained more peroxides than the crude oil in spite of the color advantage of the highest L and b values among three oils. All the oils showed the tendency of increasing in total color difference during storage at $70^{\circ}C$, fatty acid compositions were relatively constant except for decreasing tendency of linoleic acid in filtered oil. No significant difference at 1% in the oxidative stabilities was observed between centrifuged oil and crude oil with higher susceptibility to the oxidation in the filtered oil. Centrifuged sesame oil was the best in the aspect of both oxidative stability and the oil color.

  • PDF

Studies on the Free and Bound Aroma Compounds in Green and Fermented Teas (녹차와 후발효차의 유리형 및 결합형 향기성분에 대한 연구)

  • Lee, Hye-Jin;Park, Seung-Kook
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.407-412
    • /
    • 2011
  • Free and bound aroma compounds in green and fermented teas treated with microbial-fermentation were analyzed using headspace-solid phase microextraction gas chromatography (GC) and GC-mass spectrometry. Aldehydes and ketones in green tea decreased during microbial fermentation, whereas linalool and geraniol increased in the fermented tea. After enzyme treatment, (Z)-3-hexen-1-ol increased significantly following enzymatic hydrolysis of both green and fermented teas. In addition, benzaldehyde, 3-hexenyl acetate, and geraniol also increased in green tea with enzyme treatment. Bound aroma compounds in the green and fermented teas increased at different levels of added enzyme. We demonstrated the enhancement of both green and fermented teas by enzyme treatment, which can lead to improvement in the flavor qualities of green and fermented teas.

Evaluating the Headspace Volatolome, Primary Metabolites, and Aroma Characteristics of Koji Fermented with Bacillus amyloliquefaciens and Aspergillus oryzae

  • Seo, Han Sol;Lee, Sunmin;Singh, Digar;Park, Min Kyung;Kim, Young-Suk;Shin, Hye Won;Cho, Sun A;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1260-1269
    • /
    • 2018
  • Production of good Koji primarily depends upon the selection of substrate materials and fermentative microflora, which together influence the characteristic flavor and aroma. Herein, we performed comparative metabolomic analyses of volatile organic compounds (VOCs) and primary metabolites for Koji samples fermented individually with Bacillus amyloliquefaciens and Aspergillus oryzae. The VOCs and primary metabolites were analyzed using headspace solid phase microextraction (HS-SPME) followed by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). In particular, alcohols, ketones, and furans were mainly detected in Bacillus-fermented Koji (Bacillus Koji, BK), potentially due to the increased levels of lipid oxidation. A cheesy and rancid flavor was characteristic of Bacillus Koji, which is attributable to high content of typical 'off-flavor' compounds. Furthermore, the umami taste engendered by 2-methoxyphenol, (E,E)-2,4-decadienal, and glutamic acid was primarily detected in Bacillus Koji. Alternatively, malty flavor compounds (2-methylpropanal, 2-methylbutanal, 3-methylbutanal) and sweet flavor compounds (monosaccharides and maltol) were relatively abundant in Aspergillus-fermented Koji (Aspergillus Koji, AK). Hence, we argue that the VOC profile of Koji is largely determined by the rational choice of inocula, which modifies the primary metabolomes in Koji substrates, potentially shaping its volatolome as well as the aroma characteristics.

Effect of Surfactant Micelles on Lipid Oxidation in Oil-in-water Emulsion Containing Soybean Oil (Surfactant micelle이 수중유적형 유화계내의 대두유 산화에 미치는 영향)

  • Cho, Young-Je;Chun, Sung-Sook;Decker, Eric A.
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.770-774
    • /
    • 2002
  • Effect of surfactant micelles on lipid oxidation was determined in soybean oil-in-water (O/W) emulsions. The concentration of ferric irons to continuous phase in the O/W emulsions was measured as a function of various Brij type and concentrations. The concentration of ferric iron in the continuous phase increased with increasing surfactant micelles concentration $(0.5{\sim}2.0%)$ and storage time $(1{\sim}7\;days)$. At pH 3.0, the concentration of continuous phase iron was higher than at pH 7.0. Lipid oxidation rates, as determined by the formation of lipid hydroperoxides and headspace hexanal, in the O/W emulsions containing ferric iron decreased with increasing surfactant micelle concentration $(0.5{\sim}2.0%)$. These results indicate that surfactant micelles concentration could alter the physical location and prooxidant activity of iron in soybean O/W emulsions.

Effects of Heating Time and Storage Temperature on the Oxidative Stability of Heated Palm Oil (가열시간과 저장온도가 가열팜유의 산화안정성에 미치는 영향)

  • Choe, Eun-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.407-411
    • /
    • 1997
  • Effects of heating time and storage temperature on the oxidative stability of heated palm oil were studied. Palm oil was heated at $150^{\circ}C$ for 0, 1, 10 or 20 min and stored at 4, 20 or $65^{\circ}C$. The oxidative stability of the sample was evaluated by determining peroxide value of the oil and measuring the volatiles in the headspace of the sample. Significant difference in the peroxide or volatile formation was observed (p<0.05) in heated palm oils between samples stored at 4 or $20^{\circ}C$ and those stored at $65^{\circ}C$. Pentane, hexanal, heptane and total volatiles increased with heating time, while storage temperature did not significantly affect their formation, indicating that heating time played more important role in volatile formation in the heated palm oil than storage temperature. However, adverse results were observed for the formation of peroxide. The interaction effect of heating time and storage temperature on the oxidative stability of heated palm oil was also observed.

  • PDF

Partitioning Behavior of Selected Printing Ink Solvents between Headspace and Chocolate Cookie Samples

  • An, Duek-Jun
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.3
    • /
    • pp.267-271
    • /
    • 2011
  • Static Headspace Gas Chromatographic analysis was used to study the partitioning behavior of five organic printing ink solvents between chocolate cookie/air systems. Three cookie sample formulations varied with respect to chocolate type and overall percentage of constituents. Major considerations involved differences in fat content and type and resulting variability in chemical and physical structure. Each of the solvents studied (ethyl acetate, hexane, isopropanol, methyl ethyl ketone, toluene) represents a general class of printing ink solvents based on predominate functional group. Values of the partitioning coefficient (Kp) were determined at equilibrium using measured quantities of both solvent and cookie sample in closed systems at temperature of 25, 35, and $45^{\circ}C$. In each of the three cookies at the three test temperatures, toluene always exhibited the greatest value of partitioning to cookie and hexane always exhibited the least. Results also showed that the partitioning behavior of solvents is generally inversely related to temperature and that solvent affinity, though constant for a particular cookie type over all test temperatures, varies significantly among the three cookie types. The preference of each of the five solvents for each cookie sample was also found to vary with temperature. No correlation was found between the extent of partitioning and cookie formulation or physical characteristic of solvent. The Hildebrand parameter, related to ${\Delta}Hmix$ (heat of mixing), may be used to describe differences in partitioning based on the overall potential of a solvent/cookie interaction to occur. The potential for interaction is dependent upon the chemical structure of the cookie sample and thus the availability of 'active-sites' required for a given solvent.