• Title/Summary/Keyword: Heading estimation

Search Result 125, Processing Time 0.028 seconds

An Attitude Error Estimation Performance Comparison of Tightly Coupled INS/GPS Navigation System using Different Measurements (강결합 방식의 INS/GPS 시스템에서의 자세 오차 추정 성능 비교)

  • Yu, Hae-Sung;Kim, Cheon-Joong;Yoo, Ki-Jeong;Lee, Youn-Seon;Park, Heung-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.49-54
    • /
    • 2011
  • This paper addresses the performance comparisons of the GPS pseudorange and pseudorange rate measurements in the tightly coupled INS/GPS Navigation systems. Even though the two measurements have the same ability in estimating level attitude errors, pseudorange rate has an advantage in improving estimating heading attitude error performance. The performance of pseudorange and pseudorange rate measurements is compared in numerical simulations and van test.

Implementation of underwater precise navigation system for a remotely operated mine disposal vehicle

  • Kim, Ki-Hun;Lee, Chong-Moo;Choi, Hyun-Taek;Lee, Pan-Mook
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.102-109
    • /
    • 2011
  • This paper describes the implementation of a precise underwater navigation solution using a multiple sensor fusion technique based on USBL, GPS, DVL and AHRS measurements for the operation of a remotely operated mine disposal vehicle (MDV). The estimation of accurate 6DOF positions and attitudes is the key factor in executing dangerous and complicated missions. To implement the precise underwater navigation, two strategies are chosen in this paper. Firstly, the sensor frame alignment to the body frame is conducted to enhance the performance of a standalone dead-reckoning algorithm. Secondly, absolute position data measured by USBL is fused to prevent cumulative integration error. The heading alignment error is identified by comparing the measured absolute positions with the DR algorithm results. The performance of the developed approach is evaluated with the experimental data acquired by MDV in the South-sea trial.

A Study on Odometry Error Compensation using Multisensor fusion for Mobile Robot Navigation (멀티센서 융합을 이용한 자율이동로봇의 주행기록계 에러 보상에 관한 연구)

  • Song, Sin-Woo;Park, Mun-Soo;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.288-291
    • /
    • 2001
  • This paper present effective odometry error compensation using multisensor fusion for the accurate positioning of mobile robot in navigation. During obstacle avoidance and wall following of mobile robot, position estimates obtained by odometry become unrealistic and useless because of its accumulated errors. To measure the position and heading direction of mobile robot accurately, odometry sensor a gyroscope and an azimuth sensor are mounted on mobile robot and Complementary-filter is designed and implemented in order to compensate complementary drawback of each sensor and fuse their information. The experimental results show that the multisensor fusion system is more accurate than odometry only in estimation of the position and direction of mobile robot.

  • PDF

Path Planning for Static Obstacle Avoidance: ADAM III (정적 장애물 회피를 위한 경로 계획: ADAM III)

  • Choi, Heejae;Song, Bongsob
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.241-249
    • /
    • 2014
  • This paper presents a path planning algorithm of an autonomous vehicle (ADAM III) for collision avoidance in the presence of multiple obstacles. Under the requirements that a low-cost GPS is used and its computation should be completed with a sampling time of sub-second, heading angle estimation is proposed to improve performance degradation of its measurement and a hierarchical structure for path planning is used. Once it is decided that obstacle avoidance is necessary, the path planning consists in three steps: waypoint generation, trajectory candidate generation, and trajectory selection. While the waypoints and the corresponding trajectory candidates are generated based on position of obstacles, the final desired trajectory is determined with considerations of kinematic constraints as well as an optimal condition in a term of lateral deviation. Finally the proposed algorithm was validated experimentally through field tests and its demonstration was performed in Autonomous Vehicle Competition (AVC) 2013.

Performance Enhancement of Low-Cost Land Navigation System for Location-Based Service

  • Cho, Seong-Yun;Choi, Wan-Sik
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.131-144
    • /
    • 2006
  • This work demonstrates a dead-reckoning (DR) scheme for a low-cost land navigation system and a DR/GPS system design using the sigma point Kalman filter (SPKF). T hrough an observability analysis and some simulations, it is shown that the performances of a stand-alone DR system and DR/GPS system can be improved by employing the proposed DR scheme and SPKF. By using the designed DR scheme and filter, the stand-alone DR system does not have any undetectable errors occurring on the curve trajectory. And the DR/GPS system can provide a stable and seamless navigational solution even in the case where the initial heading estimation error is large, such as 160 degrees, or when the GPS signal is unavailable due to tunnels, buildings, and so on. Simulation results indicate a satisfactory performance of the proposed system.

  • PDF

Estimation of Rice Dry Matter Production by Spectral Reflectance of Solar Radiation in Paddy Field (태양광 반사율을 이용한 벼 군락의 건물량 추정)

  • 이정택;이춘우;주문갑;홍석영;김한명
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.3
    • /
    • pp.255-262
    • /
    • 1997
  • To estimate the total dry matter(TDM) of rice plant by non-destructive method, spectral reflectance from rice plant canopy was measured by using the spectroradiometer (LI-1800, LICOR Inc.) with one week interval during the rice growing season at Suwon paddy field in 1993. Two medium late maturing rices, Daechung-byeo Ilpum-byeo, and one early maturing variety, Jinbu-byeo, were cultured to observe TDM, then they were compared with those estimated by vegetation index together. Vegetation index determined by the reflectance of visible against near infrared wavelength showed high correlation with TDM. Vegetation index derived from narrow band(10nm interval) ratio, R910/R460, has the highest correlation coefficient with TDM. TDM estimated from R910/R460 from transplanting to heading stage corresponded well to measured values (Y=21.2428X-212.734 ; $R^2$=0.87). But another vegetation index, NIR(720~1,100nm) /Red(600~700nm) showed higher correlation with TDM than NIR(720~1,100nm) /Blue(400~500nm) did from heading stage to maturity.

  • PDF

Failure Detection Filter for the Sensor and Actuator Failure in the Auto-Pilot System (Auto-Pilot 시스템의 센서 및 actuator 고장진단을 위한 Failure Detection Filter)

  • Sang-Hyun Suh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.8-16
    • /
    • 1993
  • Auto-Pilot System uses heading angle information via the position sensor and the rudder device to control the ship direction. Most of the control logics are composed of the state estimation and control algorithms assuming that the measurement device and the actuator have no fault except the measurement noise. But such asumptions could bring the danger in real situation. For example, if the heading angle measuring device is out of order the control action based on those false position information could bring serious safety problem. In this study, the control system including improved method for processing the position information is applied to the Auto-Pilot System. To show the difference between general state estimator and F.D.F., BJDFs for the sensor and the actuator failure detection are designed and the performance are tested. And it is shown that bias error in sensor could be detected by state-augmented estimator. So the residual confined in the 2-dim in the presence of the sensor failure could be unidirectional in output space and bias sensor error is much easier to be detected.

  • PDF

Localization Performance Improvement for Mobile Robot using Multiple Sensors in Slope Road (경사도로에서 다중 센서를 이용한 이동로봇의 위치추정 성능 개선)

  • Kim, Ji-Yong;Lee, Ji-Hong;Byun, Jae-Min;Kim, Sung-Hun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.1
    • /
    • pp.67-75
    • /
    • 2010
  • This paper presents localization algorithm for mobile robot in outdoor environment. Outdoor environment includes the uncertainty on the ground. Magnetic sensor or IMU(Inertial Measurement Unit) has been used to estimate robot's heading angle. Two sensor is unavailable because mobile robot is electric car affected by magnetic field. Heading angle estimation algorithm for mobile robot is implemented using gyro sensor module consisting of 1-axis gyro sensors. Localization algorithm applied Extended Kalman filter that utilized GPS and encoder, gyro sensor module. Experiment results show that proposed localization algorithm improve considerably localization performance of mobile robots.

Effect of Rice Straw Treatment and Nitrogen Split Application on Nitrogen Uptake by Direct Seeding on Dry Paddy Rice (벼 건답직파 재배시 볏짚처리 및 질소분시가 질소 흡수에 미치는 영향)

  • Lee, Kyeong-Bo;Kim, Sun-Kwan;Kang, Jong-Gook;Lee, Deog-Bae;Kim, Jong-Gu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.4
    • /
    • pp.309-313
    • /
    • 1997
  • Field experiments were conducted on Jeonbug series (Fine silty, mesic family of Aeric Fluventic Haplaquepts), to study the effect of split application of N fertilizer in combination with rice straw on N use efficiency of dry-soil-direct seeded paddy rice. Treatments involved conventional application of N (in three splits; 40% at planting, 30% at five leaf stage and at heading stage) without rice straw, all basal application of N with straw application (5000 kg/ha), N application in two splits (70% at planting and 30% at heading stage) with rice straw application and N application in three splits (40% at planting, 30% at five leaf stage, 30% at heading stage) with application of rice straw. There was Zero N plot too for the estimation of N use efficiency. Seeding was done on dry soil and the filed was flooded 32 days after seeding. The fertilizer application rates were 160, 70, and 80 kg/ha of N, $P_2O_5$ and $K_2O$, respectively. The experiment was conducted for two years, in the same filed. The apparent use efficiency of fertilizer N by rice tended to be higher under the application of rice straw when N was applied in three splits. This, however, did not increase the yield of rice significantly. Even under the application of rice straw, the apparent N use efficiency was lower when N fertilizer was applied in one dose at the planting and in two splits. The lower N use efficiency in these cases, did not yield of rice significantly. The periodical analysis of mineral N in the soil suggested that higher mineral N in the soil at the early stages was responsible for the lower apparent N use efficiency.

  • PDF

Calibration of cultivar parameters for cv. Shindongjin for a rice growth model using the observation data in a low quality (저품질 관측자료를 사용한 벼 생육 모델의 신동진 품종모수 추정)

  • Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.1
    • /
    • pp.42-54
    • /
    • 2019
  • Crop models depend on a large number of input parameters including the cultivar parameters that represent the genetic characteristics of a given cultivar. The cultivar parameters have been estimated using high quality data for crop growth, which require considerable costs and efforts. The objective of this study was to examine the feasibility of using low quality data for the parameter estimation. In the present study, the cultivar parameters for cv. Shindongjin were estimated using the data obtained from the report of new cultivars development and research from 2005 to 2016. The root mean square errors (RMSE) of the heading dates were less than 3 days when the parameters associated with phenology were estimated. In contrast, the coefficient of determination for yield tended to be less than 0.1. The large errors incurred by the fact that no growth data collected over a season was used for parameter estimation. This suggests that detailed observation data needs to be prepared for parameter calibration, which would be aided by remote sensing approaches. The occurrence of natural disasters during a growing season has to be considered because crop models cannot take into account the effects of those events. Still, our results provide a reasonable range for the parameters, which could be used to set the boundary of a given parameter for cultivars similar to cv. Shindongjin in further studies.